Connecting genomic results for psychiatric disorders to human brain cell types and regions reveals convergence with functional connectivity published in Nature Communications

Brain region connectivity. (Image by the Authors of the manuscript.)
Connecting genomic results for psychiatric disorders to human brain cell types and regions reveals convergence with functional connectivity
Shuyang Yao, Arvid Harder, Fahimeh Darki, Yu-Wei Chang , Ang Li, Kasra Nikouei, Giovanni Volpe, Johan N Lundström, Jian Zeng , Naomi Wray, Yi Lu, Patrick F Sullivan, Jens Hjerling-Leffler
Nature Communications 16, 395 (2025)
doi: 10.1038/s41467-024-55611-1
medRxiv: 10.1101/2024.01.18.24301478

Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability. Using functional MRI connectivity, we further confirmed the significance of the central and lateral amygdala, hippocampal body, and prefrontal cortex in distinguishing schizophrenia cases from controls. Our findings underscore the value of single-cell transcriptomics in understanding the polygenicity of psychiatric disorders and suggest a promising alignment of genomic, transcriptomic, and brain imaging modalities for identifying common biological targets.

Critical Casimir levitation of colloids above a bull’s-eye pattern published in The Journal of Chemical Physics

Sketch of a colloid above a substrate with a bull’s-eye pattern. (Image by the Authors.)
Critical Casimir levitation of colloids above a bull’s-eye pattern
Piotr Nowakowski, Nima Farahmand Bafi, Giovanni Volpe, Svyatoslav Kondrat, S. Dietrich
The Journal of Chemical Physics 161, 214114 (2024)
arXiv: 2409.08366
doi: 10.1063/5.0235449

Critical Casimir forces emerge among particles or surfaces immersed in a near-critical fluid, with the sign of the force determined by surface properties and with its strength tunable by minute temperature changes. Here, we show how such forces can be used to trap a colloidal particle and levitate it above a substrate with a bull’s-eye pattern consisting of a ring with surface properties opposite to the rest of the substrate. Using the Derjaguin approximation and mean-field calculations, we find a rich behavior of spherical colloids at such a patterned surface, including sedimentation toward the ring and levitation above the ring (ring levitation) or above the bull’s-eye’s center (point levitation). Within the Derjaguin approximation, we calculate a levitation diagram for point levitation showing the depth of the trapping potential and the height at which the colloid levitates, both depending on the pattern properties, the colloid size, and the solution temperature. Our calculations reveal that the parameter space associated with point levitation shrinks if the system is driven away from a critical point, while, surprisingly, the trapping force becomes stronger. We discuss the application of critical Casimir levitation for sorting colloids by size and for determining the thermodynamic distance to criticality. Our results show that critical Casimir forces provide rich opportunities for controlling the behavior of colloidal particles at patterned surfaces.

Cross-modality transformations in biological microscopy enabled by deep learning published in Advanced Photonics

Cross-modality transformation and segmentation. (Image by the Authors of the manuscript.)
Cross-modality transformations in biological microscopy enabled by deep learning
Dana Hassan, Jesús Domínguez, Benjamin Midtvedt, Henrik Klein Moberg, Jesús Pineda, Christoph Langhammer, Giovanni Volpe, Antoni Homs Corbera, Caroline B. Adiels
Advanced Photonics 6, 064001 (2024)
doi: 10.1117/1.AP.6.6.064001

Recent advancements in deep learning (DL) have propelled the virtual transformation of microscopy images across optical modalities, enabling unprecedented multimodal imaging analysis hitherto impossible. Despite these strides, the integration of such algorithms into scientists’ daily routines and clinical trials remains limited, largely due to a lack of recognition within their respective fields and the plethora of available transformation methods. To address this, we present a structured overview of cross-modality transformations, encompassing applications, data sets, and implementations, aimed at unifying this evolving field. Our review focuses on DL solutions for two key applications: contrast enhancement of targeted features within images and resolution enhancements. We recognize cross-modality transformations as a valuable resource for biologists seeking a deeper understanding of the field, as well as for technology developers aiming to better grasp sample limitations and potential applications. Notably, they enable high-contrast, high-specificity imaging akin to fluorescence microscopy without the need for laborious, costly, and disruptive physical-staining procedures. In addition, they facilitate the realization of imaging with properties that would typically require costly or complex physical modifications, such as achieving superresolution capabilities. By consolidating the current state of research in this review, we aim to catalyze further investigation and development, ultimately bringing the potential of cross-modality transformations into the hands of researchers and clinicians alike.

Playing with Active Matter published in American Journal of Physics

One exemplar of the HEXBUGS used in the experiment. (Image by the Authors of the manuscript.)
Playing with Active Matter
Angelo Barona Balda, Aykut Argun, Agnese Callegari, Giovanni Volpe
Americal Journal of Physics 92, 847–858 (2024)
doi: 10.1119/5.0125111
arXiv: 2209.04168

In the past 20 years, active matter has been a very successful research field, bridging the fundamental physics of nonequilibrium thermodynamics with applications in robotics, biology, and medicine. Active particles, contrary to Brownian particles, can harness energy to generate complex motions and emerging behaviors. Most active-matter experiments are performed with microscopic particles and require advanced microfabrication and microscopy techniques. Here, we propose some macroscopic experiments with active matter employing commercially available toy robots (the Hexbugs). We show how they can be easily modified to perform regular and chiral active Brownian motion and demonstrate through experiments fundamental signatures of active systems such as how energy and momentum are harvested from an active bath, how obstacles can sort active particles by chirality, and how active fluctuations induce attraction between planar objects (a Casimir-like effect). These demonstrations enable hands-on experimentation with active matter and showcase widely used analysis methods.

Crystallization and topology-induced dynamical heterogeneities in soft granular clusters published in Physical Review of Research

Scheme of the microfluidic system for the production of clusters of a soft granular medium, and Snapshots of the cluster at different times corresponding to different sections of the channel. (Image by the Authors of the manuscript.)
Crystallization and topology-induced dynamical heterogeneities in soft granular clusters
Michal Bogdan, Jesus Pineda, Mihir Durve, Leon Jurkiewicz, Sauro Succi, Giovanni Volpe, Jan Guzowski
Physical Review of Research, 6, L032031 (2024)
DOI: 10.1103/PhysRevResearch.6.L032031
arXiv: 2302.05363

Soft-granular media, such as dense emulsions, foams or tissues, exhibit either fluid- or solidlike properties depending on the applied external stresses. Whereas bulk rheology of such materials has been thoroughly investigated, the internal structural mechanics of finite soft-granular structures with free interfaces is still poorly understood. Here, we report the spontaneous crystallization and melting inside a model soft granular cluster—a densely packed aggregate of N~30-40 droplets engulfed by a fluid film—subject to a varying external flow. We develop machine learning tools to track the internal rearrangements in the quasi-two-dimensional cluster as it transits a sequence of constrictions. As the cluster relaxes from a state of strong mechanical deformations, we find differences in the dynamics of the grains within the interior of the cluster and those at its rim, with the latter experiencing larger deformations and less frequent rearrangements, effectively acting as an elastic membrane around a fluidlike core. We conclude that the observed structural-dynamical heterogeneity results from an interplay of the topological constrains, due to the presence of a closed interface, and the internal solid-fluid transitions. We discuss the universality of such behavior in various types of finite soft granular structures, including biological tissues.

Nanoalignment by Critical Casimir Torques published in Nature Communications

Artist rendition of a disk-shaped microparticle trapped above a circular uncoated pattern within a thin gold layer coated on a glass surface. (Image by the Authors of the manuscript.)
Nanoalignment by Critical Casimir Torques
Gan Wang, Piotr Nowakowski, Nima Farahmand Bafi, Benjamin Midtvedt, Falko Schmidt, Agnese Callegari, Ruggero Verre, Mikael Käll, S. Dietrich, Svyatoslav Kondrat, Giovanni Volpe
Nature Communications, 15, 5086 (2024)
DOI: 10.1038/s41467-024-49220-1
arXiv: 2401.06260

The manipulation of microscopic objects requires precise and controllable forces and torques. Recent advances have led to the use of critical Casimir forces as a powerful tool, which can be finely tuned through the temperature of the environment and the chemical properties of the involved objects. For example, these forces have been used to self-organize ensembles of particles and to counteract stiction caused by Casimir-Liftshitz forces. However, until now, the potential of critical Casimir torques has been largely unexplored. Here, we demonstrate that critical Casimir torques can efficiently control the alignment of microscopic objects on nanopatterned substrates. We show experimentally and corroborate with theoretical calculations and Monte Carlo simulations that circular patterns on a substrate can stabilize the position and orientation of microscopic disks. By making the patterns elliptical, such microdisks can be subject to a torque which flips them upright while simultaneously allowing for more accurate control of the microdisk position. More complex patterns can selectively trap 2D-chiral particles and generate particle motion similar to non-equilibrium Brownian ratchets. These findings provide new opportunities for nanotechnological applications requiring precise positioning and orientation of microscopic objects.

Deep learning for optical tweezers published in Nanophotonics

Real-time control of optical tweezers with deep learning. (Image by the Authors of the manuscript.)
Deep learning for optical tweezers
Antonio Ciarlo, David Bronte Ciriza, Martin Selin, Onofrio M. Maragò, Antonio Sasso, Giuseppe Pesce, Giovanni Volpe and Mattias Goksör
Nanophotonics, 13(17), 3017-3035 (2024)
doi: 10.1515/nanoph-2024-0013
arXiv: 2401.02321

Optical tweezers exploit light–matter interactions to trap particles ranging from single atoms to micrometer-sized eukaryotic cells. For this reason, optical tweezers are a ubiquitous tool in physics, biology, and nanotechnology. Recently, the use of deep learning has started to enhance optical tweezers by improving their design, calibration, and real-time control as well as the tracking and analysis of the trapped objects, often outperforming classical methods thanks to the higher computational speed and versatility of deep learning. In this perspective, we show how cutting-edge deep learning approaches can remarkably improve optical tweezers, and explore the exciting, new future possibilities enabled by this dynamic synergy. Furthermore, we offer guidelines on integrating deep learning with optical trapping and optical manipulation in a reliable and trustworthy way.

Deep-learning-powered data analysis in plankton ecology published in Limnology and Oceanography Letters

Segmentation of two plankton species using deep learning (N. scintillans in blue, D. tertiolecta in green). (Image by H. Bachimanchi.)
Deep-learning-powered data analysis in plankton ecology
Harshith Bachimanchi, Matthew I. M. Pinder, Chloé Robert, Pierre De Wit, Jonathan Havenhand, Alexandra Kinnby, Daniel Midtvedt, Erik Selander, Giovanni Volpe
Limnology and Oceanography Letters (2024)
doi: 10.1002/lol2.10392
arXiv: 2309.08500

The implementation of deep learning algorithms has brought new perspectives to plankton ecology. Emerging as an alternative approach to established methods, deep learning offers objective schemes to investigate plankton organisms in diverse environments. We provide an overview of deep-learning-based methods including detection and classification of phytoplankton and zooplankton images, foraging and swimming behavior analysis, and finally ecological modeling. Deep learning has the potential to speed up the analysis and reduce the human experimental bias, thus enabling data acquisition at relevant temporal and spatial scales with improved reproducibility. We also discuss shortcomings and show how deep learning architectures have evolved to mitigate imprecise readouts. Finally, we suggest opportunities where deep learning is particularly likely to catalyze plankton research. The examples are accompanied by detailed tutorials and code samples that allow readers to apply the methods described in this review to their own data.

Destructive effect of fluctuations on the performance of a Brownian gyrator published in Soft Matter

Angular velocity in the steady-state. (Excerpt from Fig. 2 of the manuscript.)
Destructive effect of fluctuations on the performance of a Brownian gyrator
Pascal Viot, Aykut Argun, Giovanni Volpe, Alberto Imparato, Lamberto Rondoni, Gleb Oshanin
Soft Matter, 20, 3154-3160 (2024)
arxiv: 2307.05248
doi: 10.1039/D3SM01606D

The Brownian gyrator (BG) is often called a minimal model of a nano-engine performing a rotational motion, judging solely upon the fact that in non-equilibrium conditions its torque, specific angular momentum L and specific angular velocity W have non-zero mean values. For a time-discretised (with time-step δt) model we calculate here the previously unknown probability density functions (PDFs) of L and W. We show that for finite δt, the PDF of L has exponential tails and all moments are therefore well-defined. At the same time, this PDF appears to be effectively broad – the noise-to-signal ratio is generically bigger than unity meaning that L is strongly not self-averaging. Concurrently, the PDF of W exhibits heavy power-law tails and its mean W is the only existing moment. The BG is therefore not an engine in the common sense: it does not exhibit regular rotations on each run and its fluctuations are not only a minor nuisance – on contrary, their effect is completely destructive for the performance. Our theoretical predictions are confirmed by numerical simulations and experimental data. We discuss some plausible improvements of the model which may result in a more systematic rotational motion.

Dual-Angle Interferometric Scattering Microscopy for Optical Multiparametric Particle Characterization published in Nano Letters

Conceptual schematic of dual-angle interferometric scattering microscopy (DAISY). (Image by the Authors of the manuscript.)
Dual-Angle Interferometric Scattering Microscopy for Optical Multiparametric Particle Characterization
Erik Olsén, Berenice García Rodríguez, Fredrik Skärberg, Petteri Parkkila, Giovanni Volpe, Fredrik Höök, and Daniel Sundås Midtvedt
Nano Letters, 24(6), 1874-1881 (2024)
doi: 10.1021/acs.nanolett.3c03539
arXiv: 2309.07572

Traditional single-nanoparticle sizing using optical microscopy techniques assesses size via the diffusion constant, which requires suspended particles to be in a medium of known viscosity. However, these assumptions are typically not fulfilled in complex natural sample environments. Here, we introduce dual-angle interferometric scattering microscopy (DAISY), enabling optical quantification of both size and polarizability of individual nanoparticles (radius <170 nm) without requiring a priori information regarding the surrounding media or super-resolution imaging. DAISY achieves this by combining the information contained in concurrently measured forward and backward scattering images through twilight off-axis holography and interferometric scattering (iSCAT). Going beyond particle size and polarizability, single-particle morphology can be deduced from the fact that the hydrodynamic radius relates to the outer particle radius, while the scattering-based size estimate depends on the internal mass distribution of the particles. We demonstrate this by differentiating biomolecular fractal aggregates from spherical particles in fetal bovine serum at the single-particle level.