News

Invited talk by M. Selin at University of Münster, 11 April 2025

Illustration of polymer detachments. At low pH polymers attach weakly to liquid-liquid interfaces. Having the polymer attached also to a colloidal particle allows for an optical tweezers to pull the polymer loose and to detect single detachments. (Image by M. Selin.)
Optical Tweezers applications: From particle adsorption to single molecules.

Martin Selin
Date: 11 April 2025
Time: 10:30
Place: University of Münster, Germany

Optical tweezers are powerful tools for probing microscale forces in systems ranging from colloidal particles to single molecules. Here, we demonstrate their use in two different fields. First, by trapping individual colloidal particles, we study their adsorption dynamics at liquid–liquid interfaces, highlighting the critical role of surface chemistry and the presence of polymer shells. We also observe reversible polymer attachments and stretching. Second, we apply tweezers to study single-molecule mechanics. By automating these complex biophysical experiments, we enable high-throughput measurements of molecular dynamics. Our results suggest that, like DNA, synthetic polymers can be effectively described by the worm-like chain model.

BRAPH 2: a flexible, open-source, reproducible, community-oriented, easy-to-use framework for network analyses in neurosciences on bioRxiv

BRAPH 2 Genesis enables swift creation of custom, reproducible software distributions—tackling the growing complexity of neuroscience by streamlining analysis across diverse data types and workflows. (Image by B. Zufiria-Gerbolés and Y.-W. Chang.)
BRAPH 2: a flexible, open-source, reproducible, community-oriented, easy-to-use framework for network analyses in neurosciences
Yu-Wei Chang, Blanca Zufiria-Gerbolés, Pablo Emiliano Gómez-Ruiz, Anna Canal-Garcia, Hang Zhao, Mite Mijalkov, Joana Braga Pereira, Giovanni Volpe
bioRxiv: 10.1101/2025.04.11.648455

As network analyses in neuroscience continue to grow in both complexity and size, flexible methods are urgently needed to provide unbiased, reproducible insights into brain function. BRAPH 2 is a versatile, open-source framework that meets this challenge by offering streamlined workflows for advanced statistical models and deep learning in a community-oriented environment. Through its Genesis compiler, users can build specialized distributions with custom pipelines, ensuring flexibility and scalability across diverse research domains. These powerful capabilities will ensure reproducibility and accelerate discoveries in neuroscience.

Presentation by M. Selin at Ostwald Colloquium, 8 April 2025

Illustration of adsorption process of a polymer coated particle. A single particle is brought to a liquid-liquid interface using an optical tweezers and once the polymer shell makes contact with the interface the particle immediately jumps into the interface. (Image by M. Selin.)
Optical tweezers reveal how polymer coated particles jump into liquid-liquid interfaces

Martin Selin
Date: 8 April 2025
Time: 17:40
Place: Center for Interdisciplinary Research, Bielefeld University, Germany

Colloidal particles typically require salt to overcome electrostatic barriers and adsorb to liquid-liquid interfaces. Here, we show that coating particles with polymers enables spontaneous adsorption without salt. Our model system consists of silica cores coated with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). Using optical tweezers, we track individual particles showing that the polymer shell makes particles jump into a dodecane–water interface. This behavior extends to other polymers. By tuning pH, we control polymer swelling and adsorption distance. At very low pH, the attachment to the interface is weak enough that the optical tweezers can pull particles out from the interface. During this desorption process we observe single polymers detaching. These findings offer new approaches for designing responsive emulsions.

Laura Natali defended her PhD thesis on March 28th, 2025. Congrats!

Cover of the PhD thesis. (Image by L. Natali.)
Laura Natali defended her PhD thesis on March 28th, 2025. Congrats!
The defense took place in PJ, Institutionen för fysik, Origovägen 6b, Göteborg, at 10:00.

Title: Neural Networks for Complex Systems: From Epidemic Modeling to Swarm Robotics

Abstract: Deep learning models, inspired by the structure of the brain, were first developed in the last century. These models are trained to recognize patterns in large amounts of data. Recently, deep learning has made a big impact, both in research and in everyday applications, like healthcare, image recognition, and language translation.

However, despite their advancements, these models still fall short of the abilities found in biological brains, which are adaptable, energy-efficient, and have evolved over millions of years. In contrast, artificial models are specialized and struggle to adapt to new information.

To help address this gap, we have developed a robotic experiment that combines the programmability of artificial neural networks with some of the physical constraints seen in biological systems.

Thesis: https://hdl.handle.net/2077/84676

Supervisor: Giovanni Volpe
Examiner: Bernhard Mehlig
Opponent: Hamid Kellay
Committee: Maria Guix Noguera, Juliane Simmchen, Michael Felsberg
Alternate board member: Paolo Vinai

Harshith Bachimanchi defended his PhD thesis on March 26, 2025. Congrats!

Segmentation of two plankton species using deep learning (N. scintillans in blue, D. tertiolecta in green). (Image by H. Bachimanchi.)
Harshith Bachimanchi defended his PhD thesis on March 26th, 2025. Congrats!
The defense took place in PJ, Institutionen för fysik, Origovägen 6b, Göteborg, at 13:00.

Title: Deep Learning Enhanced Optical Methods for Single-Plankton Studies

Abstract: Among Earth’s earliest life forms, cyanobacteria reshaped the planet by oxygenating the atmosphere during the Great Oxidation Event 2.4 billion years ago. This process, which led to ozone formation and UV protection, paved the way for more complex photosynthetic organisms—phytoplankton, the eukaryotic descendants of cyanobacteria. Today, phytoplankton drive the global carbon cycle, producing 50–80% of Earth’s oxygen and fueling the marine food web. Microzooplankton consume nearly two-thirds of the organic carbon generated, yet despite their ecological significance, tracking biomass flow at the single-cell level remains a major challenge.

This thesis presents novel methodologies that integrate advanced optical techniques, deep learning, and simulated datasets to analyze microplankton dynamics with unprecedented resolution.

A key contribution is a deep-learning-enhanced holographic microscopy approach that quantifies microplankton biomass at the single-cell level while simultaneously capturing their three-dimensional swimming behavior. This method overcomes computational bottlenecks in traditional holography, enabling high-throughput analysis across diverse species and size ranges. Expanding on this, I demonstrate its application in mixed-species experiments to examine feeding interactions between phytoplankton and microzooplankton, capturing biomass transfer and behavioral shifts during predation.

Beyond direct imaging, this thesis leverages synthetic data to advance microscopy-based research. Neural networks trained on simulated microscopy datasets are used to detect, segment, and classify plankton species while reconstructing motion dynamics. To showcase the versatility of this approach, I present its application in a non-biological setting—detecting bubble-propelled artificial micromotors within complex experimental backgrounds. In addition to object detection, these methods also enable motion characterization of microscopic entities. To demonstrate this, I introduce synthetic microscopy videos that model microscopic organisms undergoing various anomalous diffusion behaviors. This framework is then used to develop a method that extracts motion characteristics without explicit trajectory linking, broadening its applications beyond plankton ecology.

Finally, I investigate how zooplankton—key players in the marine food web—respond to ocean wave-induced light patterns using an LED matrix. The results suggest that zooplankton use steady light sources, such as celestial objects, to ascend more rapidly during favorable low-turbulent conditions, offering new insights into their migratory strategies. Collectively, this thesis bridges marine ecology, microscopy, artificial intelligence, and biophysics to provide new tools for exploring the unseen dynamics that shape our planet.

Thesis:  https://hdl.handle.net/2077/84857

Supervisor: Giovanni Volpe
Examiner: Raimund Feifel
Opponent: Anupam Sengupta
Committee: Elisa Berdalet, Maria Guix Noguera, Josefin Titelman
Alternate board member: Paolo Vinai

Global graph features unveiled by unsupervised geometric deep learning on ArXiv

GAUDI leverages a hierarchical graph-convolutional variational autoencoder architecture, where an encoder progressively compresses the graph into a low-dimensional latent space, and a decoder reconstructs the graph from the latent embedding. (Image by M. Granfors and J. Pineda.)
Global graph features unveiled by unsupervised geometric deep learning
Mirja Granfors, Jesús Pineda, Blanca Zufiria Gerbolés, Joana B. Pereira, Carlo Manzo, Giovanni Volpe
arXiv: 2503.05560

Graphs provide a powerful framework for modeling complex systems, but their structural variability makes analysis and classification challenging. To address this, we introduce GAUDI (Graph Autoencoder Uncovering Descriptive Information), a novel unsupervised geometric deep learning framework that captures both local details and global structure. GAUDI employs an innovative hourglass architecture with hierarchical pooling and upsampling layers, linked through skip connections to preserve essential connectivity information throughout the encoding-decoding process. By mapping different realizations of a system – generated from the same underlying parameters – into a continuous, structured latent space, GAUDI disentangles invariant process-level features from stochastic noise. We demonstrate its power across multiple applications, including modeling small-world networks, characterizing protein assemblies from super-resolution microscopy, analyzing collective motion in the Vicsek model, and capturing age-related changes in brain connectivity. This approach not only improves the analysis of complex graphs but also provides new insights into emergent phenomena across diverse scientific domains.

Invited talk by S. Manikandan at the 14th Nordic Workshop on Statistical Physics, Nordita, 5 March 2025

Recent advances in nonequilibrium physics allow extracting thermodynamic quantities, such as entropy production, directly from dynamical information in microscopic movies. (Image by S. Manikandan.)
Localizing entropy production in non-equilibrium processes
Sreekanth Manikandan
Date: 5 Mar 2025
Time: 14:45
Place: Nordita
Part of the 14th Nordic Workshop on Statistical Physics

Quantifying the spatiotemporal forces, affinities, and dissipative costs of cellular-scale non-equilibrium processes from experimental data and localizing it in space and time remain a significant open challenge. Here, I explore how principles from stochastic thermodynamics, combined with machine learning techniques, offer a promising approach to addressing this issue. I will present preliminary results from experiments on fluctuating cell membranes and simulations of non-equilibrium systems in stationary and time-dependently driven states. These studies reveal potential strategies for localizing entropy production in experimental biophysical contexts while also highlighting key challenges and limitations that must be addressed.

Presentation by J. Pineda at LoG Meetup Sweden, 12 February 2025

MIRO employs a recurrent graph neural network to refine SMLM point clouds by compressing clusters around their center, enhancing inter-cluster distinction and background separation for efficient clustering. (Image by J. Pineda.)
Relational Inductive Biases as a Key to Smarter Deep Learning Microscopy
Jesús Pineda
Learning on graphs and geometry meetup at Uppsala University
Date: 12 February 2025
Time: 11:15
Place: Lecture hall 4101, Ångströmlaboratoriet, Uppsala, Sweden

Geometric deep learning has revolutionized fields like social network analysis, molecular chemistry, and neuroscience, but its application to microscopy data analysis remains a significant challenge. The hurdles stem not only from the scarcity of high-quality data but also from the intrinsic complexity and variability of microscopy datasets. This presentation introduces two groundbreaking geometric deep-learning frameworks designed to overcome these barriers, advancing the integration of graph neural networks (GNNs) into microscopy and unlocking their full potential. First, we present MAGIK, a cutting-edge framework for analyzing biological system dynamics through time-lapse microscopy. Leveraging a graph neural network augmented with attention-based mechanisms, MAGIK processes object features using geometric priors. This enables it to perform a range of tasks, from linking coordinates into trajectories to uncovering local and global dynamic properties with unprecedented precision. Remarkably, MAGIK excels under minimal data conditions, maintaining exceptional performance and robust generalization across diverse scenarios. Next, we introduce MIRO, a novel algorithm powered by recurrent graph neural networks. MIRO pre-processes Single Molecule Localization (SML) datasets to enhance the efficiency of conventional clustering methods. Its ability to handle clusters of varying shapes and scales enables more accurate and consistent analyses across complex datasets. Furthermore, MIRO’s single- and few-shot learning capabilities allow it to generalize effortlessly across scenarios, making it an efficient, scalable, and versatile tool for microscopy data analysis. Together, MAGIK and MIRO address critical limitations in microscopy data analysis, offering innovative solutions for multi-scale data analysis and advancing the boundaries of what is currently achievable with geometric deep learning in the field.

Reference

Pineda, Jesús, Benjamin Midtvedt, Harshith Bachimanchi, Sergio Noé, Daniel Midtvedt, Giovanni Volpe, and Carlo Manzo. Geometric deep learning reveals the spatiotemporal features of microscopic motionNat Mach Intell 5, 71–82 (2023).

Pineda, Jesús, Sergi Masó-Orriols, Joan Bertran, Mattias Goksör, Giovanni Volpe, and Carlo Manzo. Spatial Clustering of Molecular Localizations with Graph Neural Networks.  arXiv: 2412.00173 (2024).

Poster by M. Granfors at the Learning on graphs and geometry meetup in Uppsala, 11 February 2025

GAUDI leverages a hierarchical graph-convolutional variational autoencoder architecture, where an encoder progressively compresses the graph into a low-dimensional latent space, and a decoder reconstructs the graph from the latent embedding. (Image by M. Granfors and J. Pineda.)
Global graph features unveiled by unsupervised geometric deep learning
Mirja Granfors, Jesús Pineda, Blanca Zufiria Gerbolés, Daniel Vereb, Joana B. Pereira, Carlo Manzo, and Giovanni Volpe
Learning on graphs and geometry meetup at Uppsala University
Date: 11 February 2025
Place: Uppsala university

Graphs are used to model complex relationships, such as interactions between particles or connections between brain regions. The structural complexity and variability of graphs pose challenges to their efficient analysis and classification. Here, we propose GAUDI (Graph Autoencoder Uncovering Descriptive Information), a graph autoencoder that addresses these challenges. GAUDI’s encoder progressively reduces the size of the graph using multi-step hierarchical pooling, while its decoder incrementally increases the graph size until the original dimensions are restored, focusing on the node and edge features while preserving the graph structure through skip-connections. By training GAUDI to minimize the difference between the node and edge features of the input graph and those of the output graph, it is compelled to capture the most critical parameters describing these features in the latent space, thereby enabling the extraction of essential parameters characterizing the graphs. We demonstrate the performance of GAUDI across diverse graph data originating from complex systems, including the estimation of the parameters of Watts-Strogatz graphs, the classification of protein assembly structures from single-molecule localization microscopy data, the analysis of collective behaviors, and correlations between brain connections and age. This approach offers a robust framework for efficiently analyzing and interpreting complex graph data, facilitating the extraction of meaningful patterns and insights across a wide range of applications.

Invited talk by J. Pineda at the CMCB Lab on 27 January 2025

MIRO employs a recurrent graph neural network to refine SMLM point clouds by compressing clusters around their center, enhancing inter-cluster distinction and background separation for efficient clustering. (Image by J. Pineda.)
Spatial clustering of molecular localizations with graph neural networks
Jesús Pineda
Date: 27 January 2025
Time: 10:00
Place: SciLifeLab Campus Solna, Sweden

Single-molecule localization microscopy (SMLM) generates point clouds corresponding to fluorophore localizations. Spatial cluster identification and analysis of these point clouds are crucial for extracting insights about molecular organization. However, this task becomes challenging in the presence of localization noise, high point density, or complex biological structures. Here, we introduce MIRO (Multimodal Integration through Relational Optimization), an algorithm that uses recurrent graph neural networks to transform the point clouds in order to improve clustering efficiency when applying conventional clustering techniques. We show that MIRO supports simultaneous processing of clusters of different shapes and at multiple scales, demonstrating improved performance across varied datasets. Our comprehensive evaluation demonstrates MIRO’s transformative potential for single-molecule localization applications, showcasing its capability to revolutionize cluster analysis and provide accurate, reliable details of molecular architecture. In addition, MIRO’s robust clustering capabilities hold promise for applications in various fields such as neuroscience, for the analysis of neural connectivity patterns, and environmental science, for studying spatial distributions of ecological data.

Reference
Pineda, Jesús, Sergi Masó-Orriols, Joan Bertran, Mattias Goksör, Giovanni Volpe, and Carlo Manzo. Spatial Clustering of Molecular Localizations with Graph Neural Networks.  arXiv: 2412.00173