Berenice García Rodríguez presented her half-time seminar on 8 March 2024

Berenice García Rodríguez (right) and opponent Dr. Hana Jungová (left). (Photo by J. P. Ramírez)
Berenice García Rodríguez completed the first half of her doctoral studies, and she defended her half-time on the 8th of March 2024.

The presentation, “Quantitative Analysis of Nanoparticle Properties Using Optical Scattering Techniques,” was held in a hybrid format, with part of the audience in the Nexus room and the rest connected through Zoom. The half-time consisted of a presentation about her past and planned projects, followed by a discussion and questions proposed by her opponent, Dr. Hana Jungová.

The presentation started with a short background introduction to optical scattering techniques and nanoparticle characterization techniques, followed by an introduction and description of the first paper, “Dual-Angle Interferometric Scattering Microscopy for Optical Multiparametric Particle Characterization,” and, in the end, a brief description of the projects in which Berenice is involved.

In the last section, she outlined the proposed continuation of her PhD: quantification and characterization of biomolecular condensates and their evolution over time, monitoring lipid droplets during long timescales inside living cells, and parametrization for core-shell particles.

Dual-Angle Interferometric Scattering Microscopy for Optical Multiparametric Particle Characterization published in Nano Letters

Conceptual schematic of dual-angle interferometric scattering microscopy (DAISY). (Image by the Authors of the manuscript.)
Dual-Angle Interferometric Scattering Microscopy for Optical Multiparametric Particle Characterization
Erik Olsén, Berenice García Rodríguez, Fredrik Skärberg, Petteri Parkkila, Giovanni Volpe, Fredrik Höök, and Daniel Sundås Midtvedt
Nano Letters (2024)
arXiv: 2309.07572
doi: 10.1021/acs.nanolett.3c03539

Traditional single-nanoparticle sizing using optical microscopy techniques assesses size via the diffusion constant, which requires suspended particles to be in a medium of known viscosity. However, these assumptions are typically not fulfilled in complex natural sample environments. Here, we introduce dual-angle interferometric scattering microscopy (DAISY), enabling optical quantification of both size and polarizability of individual nanoparticles (radius <170 nm) without requiring a priori information regarding the surrounding media or super-resolution imaging. DAISY achieves this by combining the information contained in concurrently measured forward and backward scattering images through twilight off-axis holography and interferometric scattering (iSCAT). Going beyond particle size and polarizability, single-particle morphology can be deduced from the fact that the hydrodynamic radius relates to the outer particle radius, while the scattering-based size estimate depends on the internal mass distribution of the particles. We demonstrate this by differentiating biomolecular fractal aggregates from spherical particles in fetal bovine serum at the single-particle level.