Roadmap on Deep Learning for Microscopy published in Journal of Physics: Photonics

Spatio-temporal spectrum diagram of microscopy techniques and their applications. (Image by the Authors of the manuscript.)
Roadmap on Deep Learning for Microscopy
Giovanni Volpe, Carolina Wählby, Lei Tian, Michael Hecht, Artur Yakimovich, Kristina Monakhova, Laura Waller, Ivo F. Sbalzarini, Christopher A. Metzler, Mingyang Xie, Kevin Zhang, Isaac C.D. Lenton, Halina Rubinsztein-Dunlop, Daniel Brunner, Bijie Bai, Aydogan Ozcan, Daniel Midtvedt, Hao Wang, Nataša Sladoje, Joakim Lindblad, Jason T. Smith, Marien Ochoa, Margarida Barroso, Xavier Intes, Tong Qiu, Li-Yu Yu, Sixian You, Yongtao Liu, Maxim A. Ziatdinov, Sergei V. Kalinin, Arlo Sheridan, Uri Manor, Elias Nehme, Ofri Goldenberg, Yoav Shechtman, Henrik K. Moberg, Christoph Langhammer, Barbora Špačková, Saga Helgadottir, Benjamin Midtvedt, Aykut Argun, Tobias Thalheim, Frank Cichos, Stefano Bo, Lars Hubatsch, Jesus Pineda, Carlo Manzo, Harshith Bachimanchi, Erik Selander, Antoni Homs-Corbera, Martin Fränzl, Kevin de Haan, Yair Rivenson, Zofia Korczak, Caroline Beck Adiels, Mite Mijalkov, Dániel Veréb, Yu-Wei Chang, Joana B. Pereira, Damian Matuszewski, Gustaf Kylberg, Ida-Maria Sintorn, Juan C. Caicedo, Beth A Cimini, Muyinatu A. Lediju Bell, Bruno M. Saraiva, Guillaume Jacquemet, Ricardo Henriques, Wei Ouyang, Trang Le, Estibaliz Gómez-de-Mariscal, Daniel Sage, Arrate Muñoz-Barrutia, Ebba Josefson Lindqvist, Johanna Bergman
Journal of Physics: Photonics 8, 012501 (2026)
arXiv: 2303.03793
doi: 10.1088/2515-7647/ae0fd1

Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning (ML) are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the past decade. This Roadmap encompasses key aspects of how ML is applied to microscopy image data, with the aim of gaining scientific knowledge by improved image quality, automated detection, segmentation, classification and tracking of objects, and efficient merging of information from multiple imaging modalities. We aim to give the reader an overview of the key developments and an understanding of possibilities and limitations of ML for microscopy. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences.

Inchworm-Inspired Soft Robot with Groove-Guided Locomotion on ArXiv

Photograph of the soft robot, consisting of a multilayer rolled dielectric elastomer actuator integrated with a
flexible PET sheet. (Image by H. P. Thanabalan.)
Inchworm-Inspired Soft Robot with Groove-Guided Locomotion
Hari Prakash Thanabalan, Lars Bengtsson, Ugo Lafont, Giovanni Volpe
arXiv: 2512.07813

Soft robots require directional control to navigate complex terrains. However, achieving such control often requires multiple actuators, which increases mechanical complexity, complicates control systems, and raises energy consumption. Here, we introduce an inchworm-inspired soft robot whose locomotion direction is controlled passively by patterned substrates. The robot employs a single rolled dielectric elastomer actuator, while groove patterns on a 3D-printed substrate guide its alignment and trajectory. Through systematic experiments, we demonstrate that varying groove angles enables precise control of locomotion direction without the need for complex actuation strategies. This groove-guided approach reduces energy consumption, simplifies robot design, and expands the applicability of bio-inspired soft robots in fields such as search and rescue, pipe inspection, and planetary exploration.

Enhanced spatial clustering of single-molecule localizations with graph neural networks published in Nature Communications

MIRO employs a recurrent graph neural network to refine SMLM point clouds by compressing clusters around their center, enhancing inter-cluster distinction and background separation for efficient clustering. (Image by J. Pineda.)
Enhanced spatial clustering of single-molecule localizations with graph neural networks
Jesús Pineda, Sergi Masó-Orriols, Montse Masoliver, Joan Bertran, Mattias Goksör, Giovanni Volpe and Carlo Manzo
Nature Communications 16, 9693 (2025)
arXiv: 2412.00173
doi: 10.1038/s41467-025-65557-7

Single-molecule localization microscopy generates point clouds corresponding to fluorophore localizations. Spatial cluster identification and analysis of these point clouds are crucial for extracting insights about molecular organization. However, this task becomes challenging in the presence of localization noise, high point density, or complex biological structures. Here, we introduce MIRO (Multifunctional Integration through Relational Optimization), an algorithm that uses recurrent graph neural networks to transform the point clouds in order to improve clustering efficiency when applying conventional clustering techniques. We show that MIRO supports simultaneous processing of clusters of different shapes and at multiple scales, demonstrating improved performance across varied datasets. Our comprehensive evaluation demonstrates MIRO’s transformative potential for single-molecule localization applications, showcasing its capability to revolutionize cluster analysis and provide accurate, reliable details of molecular architecture. In addition, MIRO’s robust clustering capabilities hold promise for applications in various fields such as neuroscience, for the analysis of neural connectivity patterns, and environmental science, for studying spatial distributions of ecological data.

Myxococcus xanthus for active matter studies: a tutorial for its growth and potential applications published in Soft Matter

Myxococcus xanthus colonies develop different strategies to adapt to their environment, leading to the formation of macroscopic patterns from microscopic entities. (Image by the Authors of the manuscript.)
Tutorial for the growth and development of Myxococcus xanthus as a Model System at the Intersection of Biology and Physics
Jesus Manuel Antúnez Domínguez, Laura Pérez García, Natsuko Rivera-Yoshida, Jasmin Di Franco, David Steiner, Alejandro V. Arzola, Mariana Benítez, Charlotte Hamngren Blomqvist, Roberto Cerbino, Caroline Beck Adiels, Giovanni Volpe
Soft Matter 21, 8602-8623 (2025)
arXiv: 2407.18714
doi: 10.1063/5.0235449

Myxococcus xanthus is a unicellular organism known for its capacity to move and communicate, giving rise to complex collective properties, structures and behaviors. These characteristics have contributed to position M. xanthus as a valuable model organism for exploring emergent collective phenomena at the interface of biology and physics, particularly within the growing domain of active matter research. Yet, researchers frequently encounter difficulties in establishing reproducible and reliable culturing protocols. This tutorial provides a detailed and accessible guide to the culture, growth, development, and experimental sample preparation of M. xanthus. In addition, it presents several exemplary experiments that can be conducted using these samples, including motility assays, fruiting body formation, predation, and elasticotaxis—phenomena of direct relevance for active matter studies.

Video‐rate tunable colour electronic paper with human resolution published in Nature

High-resolution display of “The Kiss” on Retina E-Paper vs. iPhone 15: Photographs comparing the display of “The Kiss” on an iPhone 15 and Retina E-paper. The surface area of the Retina E-paper is ~ 1/4000 times smaller than the iPhone 15. (Image by the Authors of the manuscript.)
Video‐rate tunable colour electronic paper with human resolution
Ade Satria Saloka Santosa, Yu-Wei Chang, Andreas B. Dahlin, Lars Osterlund, Giovanni Volpe, Kunli Xiong
Nature 646, 1089-1095 (2025)
arXiv: 2502.03580
doi: 10.1038/s41586-025-09642-3

As demand for immersive experiences grows, displays are moving closer to the eye with smaller sizes and higher resolutions. However, shrinking pixel emitters reduce intensity, making them harder to perceive. Electronic Papers utilize ambient light for visibility, maintaining optical contrast regardless of pixel size, but cannot achieve high resolution. We show electrically tunable meta-pixels down to ~560 nm in size (>45,000 PPI) consisting of WO3 nanodiscs, allowing one-to-one pixel-photodetector mapping on the retina when the display size matches the pupil diameter, which we call Retina Electronic Paper. Our technology also supports video display (25 Hz), high reflectance (~80%), and optical contrast (~50%), which will help create the ultimate virtual reality display.

Microscopic Geared Metamachines published in Nature Communications

Top: single gear; Bottom: the second gear from the right has an optical metamaterial that react to laserlight and makes the gear move. All gears are made in silica directly on a chip. Each gear is about 0.016 mm in diameter. (Image by G. Wang)

Microscopic Geared Metamachines
Gan Wang, Marcel Rey, Antonio Ciarlo, Mohanmmad Mahdi Shanei, Kunli Xiong, Giuseppe Pesce, Mikael Käll and Giovanni Volpe
Nature Communications 16, 7767 (2025)
doi: 10.1038/s41467-025-62869-6
arXiv: 2409.17284

The miniaturization of mechanical machines is critical for advancing nanotechnology and reducing device footprints. Traditional efforts to downsize gears and micromotors have faced limitations at around 0.1 mm for over thirty years due to the complexities of constructing drives and coupling systems at such scales. Here, we present an alternative approach utilizing optical metasurfaces to locally drive microscopic machines, which can then be fabricated using standard lithography techniques and seamlessly integrated on the chip, achieving sizes down to tens of micrometers with movements precise to the sub-micrometer scale. As a proof of principle, we demonstrate the construction of microscopic gear trains powered by a single driving gear with a metasurface activated by a plane light wave. Additionally, we develop a versatile pinion and rack micromachine capable of transducing rotational motion, performing periodic motion, and controlling microscopic mirrors for light deflection. Our on-chip fabrication process allows for straightforward parallelization and integration. Using light as a widely available and easily controllable energy source, these miniaturized metamachines offer precise control and movement, unlocking new possibilities for micro- and nanoscale systems.

After the article was published, it was reported by many media outlets, University of Gothenburg, New Scientist, Optics.org, Phys.org, ScienceDaily, Discover Magazine, among others.

Featured in:
GU: Light powered motor fits inside a strand of hair.
New Scientist: Microscopic gears powered by light could be used to make tiny machines and video on Youtube.
Optics.org: University of Gothenburg makes micron-scale light-powered gears
Phys.org: New light-powered gear fits inside a strand of hair
ScienceDaily: Scientists build micromotors smaller than a human hair
Discover Magazine: The Smallest Motors in History Can Fit Inside a Strand of Hair
@DrBenMiles: Scientists Create Micro Machines Powered by Light

Roadmap for animate matter published on Journal of Physics: Condensed Matter

The three properties of animacy. The three polar plots sketch our jointly perceived level of development for each principle of animacy (i.e. activity, adaptiveness and autonomy) for each system discussed in this roadmap. The polar coordinate represents the various systems, while the radial coordinate represents the level of development (from low to high) that each system shows in the principle of each polar plot. Ideally, within a generation, all systems will fill these polar plots to show high levels in each of the three attributes of animacy. For now, only biological materials (not represented here) can be considered fully animated. (Image from the manuscript, adapted.)
Roadmap for animate matter
Giorgio Volpe, Nuno A M Araújo, Maria Guix, Mark Miodownik, Nicolas Martin, Laura Alvarez, Juliane Simmchen, Roberto Di Leonardo, Nicola Pellicciotta, Quentin Martinet, Jérémie Palacci, Wai Kit Ng, Dhruv Saxena, Riccardo Sapienza, Sara Nadine, João F Mano, Reza Mahdavi, Caroline Beck Adiels, Joe Forth, Christian Santangelo, Stefano Palagi, Ji Min Seok, Victoria A Webster-Wood, Shuhong Wang, Lining Yao, Amirreza Aghakhani, Thomas Barois, Hamid Kellay, Corentin Coulais, Martin van Hecke, Christopher J Pierce, Tianyu Wang, Baxi Chong, Daniel I Goldman, Andreagiovanni Reina, Vito Trianni, Giovanni Volpe, Richard Beckett, Sean P Nair, Rachel Armstrong
Journal of Physics: Condensed Matter 37, 333501 (2025)
arXiv: 2407.10623
doi: 10.1088/1361-648X/adebd3

Humanity has long sought inspiration from nature to innovate materials and devices. As science advances, nature-inspired materials are becoming part of our lives. Animate materials, characterized by their activity, adaptability, and autonomy, emulate properties of living systems. While only biological materials fully embody these principles, artificial versions are advancing rapidly, promising transformative impacts in the circular economy, health and climate resilience within a generation. This roadmap presents authoritative perspectives on animate materials across different disciplines and scales, highlighting their interdisciplinary nature and potential applications in diverse fields including nanotechnology, robotics and the built environment. It underscores the need for concerted efforts to address shared challenges such as complexity management, scalability, evolvability, interdisciplinary collaboration, and ethical and environmental considerations. The framework defined by classifying materials based on their level of animacy can guide this emerging field to encourage cooperation and responsible development. By unravelling the mysteries of living matter and leveraging its principles, we can design materials and systems that will transform our world in a more sustainable manner.

Soft Matter Lab members present at SPIE Optics+Photonics conference in San Diego, 3-7 August 2025

The Soft Matter Lab participates to the SPIE Optics+Photonics conference in San Diego, CA, USA, 3-7 August 2025, with the presentations listed below.

Giovanni Volpe, who serves as Symposium Chair for the SPIE Optics+Photonics Congress in 2025, is a coauthor of the following invited presentations:

Giovanni Volpe will also be the reference presenter of the following Poster contributions:

Poster by A. Callegari at SPIE-OTOM, San Diego, 4 August 2025

One exemplar of the HEXBUGS used in the experiment. (Image by the Authors of the manuscript.)
Experimenting with macroscopic active matter
Angelo Barona Balda, Aykut Argun, Agnese Callegari, Giovanni Volpe
SPIE-OTOM, San Diego, CA, USA, 3 – 7 August 2025
Date: 4 August 2025
Time: 5:30 PM – 7:30 PM PDT
Place: Conv. Ctr. Exhibit Hall A

Presenter: Giovanni Volpe
Contribution submitted by Agnese Callegari

Active matter is based on concepts of nonequilibrium thermodynamics applied to the most diverse disciplines. A key concept is the active Brownian particle, which, unlike passive ones, extracts energy from its environment to generate complex motion and emergent behaviors. Despite its significance, active matter remains absent from standard curricula. This work presents macroscopic experiments using commercially available Hexbugs to demonstrate active matter phenomena. We show how Hexbugs can be modified to perform both regular and chiral active Brownian motion and interact with passive objects, inducing movement and rotation. By introducing obstacles, we sort Hexbugs based on motility and chirality. Finally, we demonstrate a Casimir-like attraction effect between planar objects in the presence of active particles.

Reference
Angelo Barona Balda, Aykut Argun, Agnese Callegari, Giovanni Volpe
Playing with Active Matter, Americal Journal of Physics 92, 847–858 (2024)

Poster by A. Callegari at SPIE-ETAI, San Diego, 4 August 2025

Focused rays scattered by an ellipsoidal particles (left). Optical torque along y calculated in the x-y plane using ray scattering with a grid of 1600 rays (up, right) and using a trained neural network (down, right). (Image by the Authors of the manuscript.)
Dense neural networks for geometrical optics
David Bronte Ciriza, Alessandro Magazzù, Agnese Callegari, Gunther Barbosa, Antonio A. R. Neves, Maria Antonia Iatì, Giovanni Volpe, and Onofrio M. Maragò
SPIE-ETAI, San Diego, CA, USA, 3 – 7 August 2025
Date: 4 August 2025
Time: 5:30 PM – 7:30 PM PDT
Place: Conv. Ctr. Exhibit Hall A

Presenter: Giovanni Volpe
Contribution submitted by Agnese Callegari

Light can trap and manipulate microscopic objects through optical forces and torques, as seen in optical tweezers. Predicting these forces is crucial for experiments and setup design. This study focuses on the geometrical optics regime, which applies to particles much larger than the light’s wavelength. In this model, a beam is represented by discrete rays that undergo multiple reflections and refractions, transferring momentum and angular momentum. However, the choice of ray discretization affects the balance between computational speed and accuracy. We demonstrate that neural networks overcome this limitation, enabling faster and even more precise simulations. Using an optically trapped spherical particle with an analytical solution as a benchmark, we validate our method and apply it to study complex systems that would otherwise be computationally hard.

Reference
David Bronte Ciriza, Alessandro Magazzù, Agnese Callegari, Gunther Barbosa, Antonio A. R. Neves, Maria A. Iatì, Giovanni Volpe, Onofrio M. Maragò, Faster and more accurate geometrical-optics optical force calculation using neural networks, ACS Photonics 10, 234–241 (2023)