Roadmap for Optical Tweezers published in Journal of Physics: Photonics

Illustration of an optical tweezers holding a particle. (Image by A. Magazzù.)
Roadmap for optical tweezers
Giovanni Volpe, Onofrio M Maragò, Halina Rubinsztein-Dunlop, Giuseppe Pesce, Alexander B Stilgoe, Giorgio Volpe, Georgiy Tkachenko, Viet Giang Truong, Síle Nic Chormaic, Fatemeh Kalantarifard, Parviz Elahi, Mikael Käll, Agnese Callegari, Manuel I Marqués, Antonio A R Neves, Wendel L Moreira, Adriana Fontes, Carlos L Cesar, Rosalba Saija, Abir Saidi, Paul Beck, Jörg S Eismann, Peter Banzer, Thales F D Fernandes, Francesco Pedaci, Warwick P Bowen, Rahul Vaippully, Muruga Lokesh, Basudev Roy, Gregor Thalhammer-Thurner, Monika Ritsch-Marte, Laura Pérez García, Alejandro V Arzola, Isaac Pérez Castillo, Aykut Argun, Till M Muenker, Bart E Vos, Timo Betz, Ilaria Cristiani, Paolo Minzioni, Peter J Reece, Fan Wang, David McGloin, Justus C Ndukaife, Romain Quidant, Reece P Roberts, Cyril Laplane, Thomas Volz, Reuven Gordon, Dag Hanstorp, Javier Tello Marmolejo, Graham D Bruce, Kishan Dholakia, Tongcang Li, Oto Brzobohatý, Stephen H Simpson, Pavel Zemánek, Felix Ritort, Yael Roichman, Valeriia Bobkova, Raphael Wittkowski, Cornelia Denz, G V Pavan Kumar, Antonino Foti, Maria Grazia Donato, Pietro G Gucciardi, Lucia Gardini, Giulio Bianchi, Anatolii V Kashchuk, Marco Capitanio, Lynn Paterson, Philip H Jones, Kirstine Berg-Sørensen, Younes F Barooji, Lene B Oddershede, Pegah Pouladian, Daryl Preece, Caroline Beck Adiels, Anna Chiara De Luca, Alessandro Magazzù, David Bronte Ciriza, Maria Antonia Iatì, Grover A Swartzlander Jr
Journal of Physics: Photonics 2(2), 022501 (2023)
arXiv: 2206.13789
doi: 110.1088/2515-7647/acb57b

Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.

Presentation by L. Pérez at ELS 2021, 13 July 2021

Laura Pérez presented the work “FORMA and BEFORE: expanding applications of optical tweezers” at the ELS conference (online) on the 13th of July.

The main objective of the Electromagnetic and Light Scattering Conference (ELS) is to bring together scientists and engineers studying various aspects of light scattering and to provide a relaxed academic atmosphere for in-depth discussions of theoretical advances, measurements, and applications.

FORMA allows to identify and characterize all the equilibrium points in a force field generated by a speckle pattern.
FORMA and BEFORE: Expanding Applications of Optical Tweezers. Laura Pérez Garcia, Martin Selin, Alejandro V. Arzola, Giovanni Volpe, Alessandro Magazzù, Isaac Pérez Castillo.
ELS 2021
Date: 13 July 2021
Time: 15:45 (CEST)

Abstract: 
FORMA (force reconstruction via maximum-likelihood-estimator analysis) addresses the need to measure the force fields acting on microscopic particles. Compared to alternative established methods, FORMA is faster, simpler, more accurate, and more precise. Furthermore, FORMA can also measure non-conservative and out-of-equilibrium force fields. Here, after a brief introduction to FORMA, I will present its use, advantages, and limitations. I will conclude with the most recent work where we exploit Bayesian inference to expand FORMA’s scope of application.

Soft Matter Lab’s presentations at OSA-OMA 2021

The Soft Matter Lab is involved in six presentations at the OSA Biophotonic Congress: Optics in the Life Sciences 2021, topical meeting of Optical Manipulation and its Applications.
Moreover, three of the presentations were selected as finalists for the best student paper in the topical meeting of Optical Manipulation and its Applications.

You can find the details below:

12 April

15 April

16 April

  • 16:15 CEST
    Calibration of Force Fields Using Recurrent Neural Networks (AF2D.4)
    Aykut Argun, University of Gothenburg

Presentation by L. Pérez García at OSA-OMA-2021

FORMA allows to identify and characterize all the equilibrium points in a force field generated by a speckle pattern.
FORMA and BEFORE: Expanding Applications of Optical Tweezers. Laura Pérez Garcia, Martin Selin, Alejandro V. Arzola, Giovanni Volpe, Alessandro Magazzù, Isaac Pérez Castillo.
Submitted to OSA-OMA 2021,  ATh1D.5
Date: 15 April
Time: 15:45 (CEST)

Abstract: 
FORMA (force reconstruction via maximum-likelihood-estimator analysis) addresses the need to measure the force fields acting on microscopic particles. Compared to alternative established methods, FORMA is faster, simpler, more accurate, and more precise. Furthermore, FORMA can also measure non-conservative and out-of-equilibrium force fields. Here, after a brief introduction to FORMA, I will present its use, advantages, and limitations. I will conclude with the most recent work where we exploit Bayesian inference to expand FORMA’s scope of application.

Laura Pérez García nominated for a Student Paper Prize at the Biophotonics Congress

FORMA allows to identify and characterize all the equilibrium points in a force field generated by a speckle pattern

Laura Pérez García has been nominated by the Optical Society of America for a Student Paper Prize for Optical Manipulation and its Applications among three other finalists. She will present her work on FORMA and BEFORE: Expanding Applications of Optical Tweezers at the Optical Manipulation and its Applications meeting as part of the 2021 OSA Biophotonics Congress: Optics in Life Sciences.

The final selection will be based on the oral talk and Laura will present her work on the 15th of April at 15:45 (CEST).

Optical Tweezers: A Comprehensive Tutorial from Calibration to Applications accepted on Advances in Optics and Photonics

Schematic of a bistable potential generated with a double-beam optical tweezers.

Optical Tweezers: A Comprehensive Tutorial from Calibration to Applications
Jan Gieseler, Juan Ruben Gomez-Solano, Alessandro Magazzù, Isaac Pérez Castillo, Laura Pérez García, Marta Gironella-Torrent, Xavier Viader-Godoy, Felix Ritort, Giuseppe Pesce, Alejandro V. Arzola, Karen Volke-Sepulveda & Giovanni Volpe
Advances in Optics and Photonics, 13(1), 74-241 (2021)
doi: https://doi.org/10.1364/AOP.394888
arXiv: 2004.05246

Since their invention in 1986 by Arthur Ashkin and colleagues, optical tweezers have become an essential tool in several fields of physics, spectroscopy, biology, nanotechnology, and thermodynamics. In this Tutorial, we provide a primer on how to calibrate optical tweezers and how to use them for advanced applications. After a brief general introduction on optical tweezers, we focus on describing and comparing the various available calibration techniques. Then, we discuss some cutting-edge applications of optical tweezers in a liquid medium, namely to study single-molecule and single-cell mechanics, microrheology, colloidal interactions, statistical physics, and transport phenomena. Finally, we consider optical tweezers in vacuum, where the absence of a viscous medium offers vastly different dynamics and presents new challenges. We conclude with some perspectives for the field and the future application of optical tweezers. This Tutorial provides both a step-by-step guide ideal for non-specialists entering the field and a comprehensive manual of advanced techniques useful for expert practitioners. All the examples are complemented by the sample data and software necessary to reproduce them.

Invited talk by L. Pérez at SPIE Photonics West OPTO

Stable, unstable and saddle points in a speckle optical potential.
FORMA: expanding applications of optical tweezers
Laura Pérez García
Invited talk at SPIE Photonics West OPTO
6 March 2021
Online

In this presentation, Laura Pérez will talk about FORMA  (force reconstruction via maximum-likelihood-estimator analysis) which addresses the need of measuring the force fields acting on microscopic particles. Compared to alternative established methods, FORMA is faster, simpler, more accurate, and more precise. Furthermore, FORMA can also measure non-conservative and out-of-equilibrium force fields. Here, after a brief introduction to FORMA, I will present its use, advantages, and limitations. I will conclude with some recent work where we exploit Bayesian inference to expand the scope of application of FORMA.

References:
Laura Pérez García, Jaime Donlucas Pérez, Giorgio Volpe, Alejandro V. Arzola & Giovanni Volpe, High-Performance Reconstruction of Microscopic Force Fields from Brownian Trajectories, Nature Communications 9, 5166 (2018)

Time: 6 March 2021
Place: Online
Link: FORMA: expanding applications of optical tweezers at SPIE Photonics West OPTO

Soft Matter Lab presentations at the SPIE Optics+Photonics Digital Forum

Seven members of the Soft Matter Lab (Saga HelgadottirBenjamin Midtvedt, Aykut Argun, Laura Pérez-GarciaDaniel MidtvedtHarshith BachimanchiEmiliano Gómez) were selected for oral and poster presentations at the SPIE Optics+Photonics Digital Forum, August 24-28, 2020.

The SPIE digital forum is a free, online only event.
The registration for the Digital Forum includes access to all presentations and proceedings.

The Soft Matter Lab contributions are part of the SPIE Nanoscience + Engineering conferences, namely the conference on Emerging Topics in Artificial Intelligence 2020 and the conference on Optical Trapping and Optical Micromanipulation XVII.

The contributions being presented are listed below, including also the presentations co-authored by Giovanni Volpe.

Note: the presentation times are indicated according to PDT (Pacific Daylight Time) (GMT-7)

Emerging Topics in Artificial Intelligence 2020

Saga Helgadottir
Digital video microscopy with deep learning (Invited Paper)
26 August 2020, 10:30 AM
SPIE Link: here.

Aykut Argun
Calibration of force fields using recurrent neural networks
26 August 2020, 8:30 AM
SPIE Link: here.

Laura Pérez-García
Deep-learning enhanced light-sheet microscopy
25 August 2020, 9:10 AM
SPIE Link: here.

Daniel Midtvedt
Holographic characterization of subwavelength particles enhanced by deep learning
24 August 2020, 2:40 PM
SPIE Link: here.

Benjamin Midtvedt
DeepTrack: A comprehensive deep learning framework for digital microscopy
26 August 2020, 11:40 AM
SPIE Link: here.

Gorka Muñoz-Gil
The anomalous diffusion challenge: Single trajectory characterisation as a competition
26 August 2020, 12:00 PM
SPIE Link: here.

Meera Srikrishna
Brain tissue segmentation using U-Nets in cranial CT scans
25 August 2020, 2:00 PM
SPIE Link: here.

Juan S. Sierra
Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks
26 August 2020, 11:50 AM
SPIE Link: here.

Harshith Bachimanchi
Digital holographic microscopy driven by deep learning: A study on marine planktons (Poster)
24 August 2020, 5:30 PM
SPIE Link: here.

Emiliano Gómez
BRAPH 2.0: Software for the analysis of brain connectivity with graph theory (Poster)
24 August 2020, 5:30 PM
SPIE Link: here.

Optical Trapping and Optical Micromanipulation XVII

Laura Pérez-García
Reconstructing complex force fields with optical tweezers
24 August 2020, 5:00 PM
SPIE Link: here.

Alejandro V. Arzola
Direct visualization of the spin-orbit angular momentum conversion in optical trapping
25 August 2020, 10:40 AM
SPIE Link: here.

Isaac Lenton
Illuminating the complex behaviour of particles in optical traps with machine learning
26 August 2020, 9:10 AM
SPIE Link: here.

Fatemeh Kalantarifard
Optical trapping of microparticles and yeast cells at ultra-low intensity by intracavity nonlinear feedback forces
24 August 2020, 11:10 AM
SPIE Link: here.

Note: the presentation times are indicated according to PDT (Pacific Daylight Time) (GMT-7)

Optical force field reconstruction using Brownian trajectories

Optical force field reconstruction using Brownian trajectories
Laura Pérez García, Jaime Donlucas Pérez, Giorgio Volpe, Alejandro V. Arzola & Giovanni Volpe

Click here to see the slides.
Twitter Link: here.

Optical tweezers have evolved into sophisticated tools for the measurement and application of nanoscopic forces; its use ranges from mechanobiology to cooling and trapping atoms.
Despite their ever-growing interest, the methods employed to measure optical forces have not changed much in the last 30 years. The key methods measure the potential function, the autocorrelation function (ACF), or the power spectral density (PSD) of an optically trapped particle’s motion. Unfortunately, all these techniques have some drawbacks: they require large amounts of data acquired for long times (potential) or at high frequency (ACF and PSD); they cannot identify non-conservative force-field components; they can only measure the properties of stable equilibrium positions, and they require setting several parameters carefully and expertly [1]. These shortcomings have limited the possibility of measuring nanoscopic forces in many potential applications, such as experiments with non-conservative force fields and out-of-equilibrium conditions.

We have recently introduced a simple, robust, and fast algorithm that permits to reconstruct microscopic force fields from Brownian trajectories, Force Reconstruction via Maximum-likelihood-estimator Analysis — FORMA. FORMA exploits the fact that in the proximity of an equilibrium position, the force field can be approximated by a linear form, and therefore, optimally estimated using a linear maximum-likelihood-estimator. Its key advantages are that FORMA does not require setting analysis parameters, it executes orders-of-magnitude faster than other more standard methods, and it requires ten times fewer data to achieve the same precision and accuracy. Finally, FORMA also permits the characterization of non-conservative force fields and non-stable equilibrium positions in extended force fields [2].

References:

[1] Jones et al. Optical tweezers: Principles and applications. Cambridge, 2015.
[2] L. Pérez García, et al. Nat. Commun. 9, 5166 (2018).

Poster Session
Time: June 22nd 2020
Place: Twitter

POM Conference
Link: 
POM
Time: June 25th 2020
Place: Online

Poster Slides

Laura Pérez García – POM Poster – Page 1
Laura Pérez García – POM Poster – Page 2
Laura Pérez García – POM Poster – Page 3
Laura Pérez García – POM Poster – Page 4

Soft Matter Lab presentations at the Photonics Online Meet-up, 22 June 2020

Six members of the Soft Matter Lab (Aykut Argun, Falko Schmidt, Laura Pérez-Garcia, Saga Helgadottir, Alessandro Magazzù, Daniel Midtvedt) were selected for poster presentations at the Photonics Online Meet-up (POM).

POM is an entirely free virtual conference. It aims to bring together a community of early career and established researchers from universities, industry, and government working in optics and photonics.

The meeting, at its second edition, will be held on June 25th 2020, 9-14.30 Central European Time. The virtual poster session will take place on June 22nd, on Twitter and virtual reality.

The poster contributions being presented are:

Aykut Argun
Enhanced force-field calibration via machine learning
Twitter Link: here.

Falko Schmidt
Dynamics of an active nanoparticle in an optical trap
Twitter Link: here.

Laura Pérez-García
Optical force field reconstruction using Brownian trajectories
Twitter Link: here.

Saga Helgadottir
DeepTrack: A comprehensive deep learning framework for digital microscopy
Twitter Link: here.

Alessandro Magazzù
Controlling the dynamics of colloidal particles by critical Casimir forces
Twitter Link: here.

Daniel Midtvedt
Holographic characterisation of subwavelength particles enhanced by deep learning
Twitter Link: here.

Link: Photonics Online Meet-up (POM)