News

Brian Senabulya Joins the Soft Matter Lab

(Photo by A. Ciarlo.)
Brian Senabulya joined the Soft Matter Lab on 20 January 2025.

Brian is a master student in Physics at the Physics Department of Gothenburg University.

During his time at the Soft Matter Lab, he will work on a project about deep learning based particle tracking and trajectory linking.

Diffusion models for super-resolution microscopy: a tutorial published in Journal of Physics: Photonics

Super-resolution by diffusion models: low-resolution images of microtubules (left) are transformed to high-resolution (right) by diffusion model. Dataset courtesy: BioSR Dataset. (Image by H. Bachimamchi.)
Diffusion models for super-resolution microscopy: a tutorial
Harshith Bachimanchi, Giovanni Volpe
Journal of Physics: Photonics 7, 013001 (2025)
doi: 10.1088/2515-7647/ada101
arXiv: 2409.16488

Diffusion models have emerged as a prominent technique in generative modeling with neural networks, making their mark in tasks like text-to-image translation and super-resolution. In this tutorial, we provide a comprehensive guide to build denoising diffusion probabilistic models from scratch, with a specific focus on transforming low-resolution microscopy images into their corresponding high-resolution versions in the context of super-resolution microscopy. We provide the necessary theoretical background, the essential mathematical derivations, and a detailed Python code implementation using PyTorch. We discuss the metrics to quantitatively evaluate the model, illustrate the model performance at different noise levels of the input low-resolution images, and briefly discuss how to adapt the tutorial for other applications. The code provided in this tutorial is also available as a Python notebook in the supplementary information.

Benjamin Midtvedt defended his PhD thesis on 9 January 2025. Congrats!

Benjamin Midtvedt, PhD defense. (Photo by H. P. Thanabalan.)
Benjamin Midtvedt defended his PhD thesis on 9 January 2025. Congrats!
The defense will take place in PJ, Institutionen för fysik, Origovägen 6b, Göteborg, at 13:00.

Title: Annotation-free deep learning for quantitative microscopy

Abstract: Quantitative microscopy is an essential tool for studying and understanding microscopic structures. However, analyzing the large and complex datasets generated by modern microscopes presents significant challenges. Manual analysis is time-intensive and subjective, rendering it impractical for large datasets. While automated algorithms offer faster and more consistent results, they often require careful parameter tuning to achieve acceptable performance, and struggle to interpret the more complex data produced by modern microscopes. As such, there is a pressing need to develop new, scalable analysis methods for quantitative microscopy. In recent years, deep learning has transformed the field of computer vision, achieving superhuman performance in tasks ranging from image classification to object detection. However, this success depends on large, annotated datasets, which are often unavailable in microscopy. As such, to successfully and efficiently apply deep learning to microscopy, new strategies that bypass the dependency on extensive annotations are required. In this dissertation, I aim to lower the barrier for applying deep learning in microscopy by developing methods that do not rely on manual annotations and by providing resources to assist researchers in using deep learning to analyze their own microscopy data. First, I present two cases where training annotations are generated through alternative means that bypass the need for human effort. Second, I introduce a deep learning method that leverages symmetries in both the data and the task structure to train a statistically optimal model for object detection without any annotations. Third, I propose a method based on contrastive learning to estimate nanoparticle sizes in diffraction-limited microscopy images, without requiring annotations or prior knowledge of the optical system. Finally, I deliver a suite of resources that empower researchers in applying deep learning to microscopy. Through these developments, I aim to demonstrate that deep learning is not merely a “black box” tool. Instead, effective deep learning models should be designed with careful consideration of the data, assumptions, task structure, and model architecture, encoding as much prior knowledge as possible. By structuring these interactions with care, we can develop models that are more efficient, interpretable, and generalizable, enabling them to tackle a wider range of microscopy tasks.

Thesis: https://hdl.handle.net/2077/84178

Supervisor: Giovanni Volpe
Examiner: Dag Hanstorp
Opponent: Ivo Sbalzarini
Committee: Susan Cox, Maria Arrate Munoz Barrutia, Ignacio Arganda-Carreras
Alternate board member: Måns Henningson

Ivo Sbalzarini (left) and Benjamin Midtvedt (right). (Photo by H. P. Thanabalan.)
Benjamin Midtvedt (left), Giovanni Volpe (right), announcement. (Photo by H. P. Thanabalan.)
From left to right: Ignacio Arganda, Arrate Muñoz Barrutia, Susan Cox, Benjamin Midtvedt, Giovanni Volpe, Ivo Sbalzarini. (Photo by H. P. Thanabalan.)

Talk by Ivo Sbalzarini, 9 January 2025

Ivo Sbalzarini, talk. (Photo by Y.-W. Chang.)
Content-adaptive deep learning for large-scale
fluorescence microscopy imaging

Ivo Sbalzarini
Max Planck Institute of Molecular Cell Biology and Genetics
Center for Systems Biology Dresden
https://sbalzarini-lab.org/

Date: 9 January 2025
Time: 11:00
Place: Nexus

Anqi Lyu joins the Soft Matter Lab

Anqi Lyu starts her PhD at the Physics Department of the University of Gothenburg on 8 January 2025.

Anqi has a Master degree in Medical Bioinformatics from University of Verona, Italy.

In her PhD, she will focus on delineating how plasma factors globally influence endothelial cells, with emphasis on their roles in health, ageing and disease, by utilizing computational tools in combination with interdisciplinary approaches.

Accelerating Plasmonic Hydrogen Sensors for Inert Gas Environments by Transformer-Based Deep Learning published in ACS Sensors

Schematic illustration of the plasmonic H2 sensing principle, where the sorption of hydrogen into hydride-forming metal nanoparticles induces a change in their localized surface plasmon resonance frequency, which leads to a color change that is resolved in a spectroscopic measurement in the visible light spectral range. (Image by the Authors of the manuscript.)
Accelerating Plasmonic Hydrogen Sensors for Inert Gas Environments by Transformer-Based Deep Learning
Viktor Martvall, Henrik Klein Moberg, Athanasios Theodoridis, David Tomeček, Pernilla Ekborg-Tanner, Sara Nilsson, Giovanni Volpe, Paul Erhart, Christoph Langhammer
ACS Sensors 10, 376–386 (2025)
arXiv: 2312.15372
doi: 10.1021/acssensors.4c02616

Rapidly detecting hydrogen leaks is critical for the safe large-scale implementation of hydrogen technologies. However, to date, no technically viable sensor solution exists that meets the corresponding response time targets under technically relevant conditions. Here, we demonstrate how a tailored long short-term transformer ensemble model for accelerated sensing (LEMAS) speeds up the response of an optical plasmonic hydrogen sensor by up to a factor of 40 and eliminates its intrinsic pressure dependence in an environment emulating the inert gas encapsulation of large-scale hydrogen installations by accurately predicting its response value to a hydrogen concentration change before it is physically reached by the sensor hardware. Moreover, LEMAS provides a measure for the uncertainty of the predictions that are pivotal for safety-critical sensor applications. Our results advertise the use of deep learning for the acceleration of sensor response, also beyond the realm of plasmonic hydrogen detection.

Roadmap on machine learning glassy dynamics published in Nature Review Physics

Visual summary of the scope of the review. (Image by the Authors.)
Roadmap on machine learning glassy dynamics
Gerhard Jung, Rinske M. Alkemade, Victor Bapst, Daniele Coslovich, Laura Filion, François P. Landes, Andrea J. Liu, Francesco Saverio Pezzicoli, Hayato Shiba, Giovanni Volpe, Francesco Zamponi, Ludovic Berthier & Giulio Biroli
Nature Review Physics (2025)
doi: 10.1038/s42254-024-00791-4
arxiv: 2311.14752

Unravelling the connections between microscopic structure, emergent physical properties and slow dynamics has long been a challenge when studying the glass transition. The absence of clear visible structural order in amorphous configurations complicates the identification of the key physical mechanisms underpinning slow dynamics. The difficulty in sampling equilibrated configurations at low temperatures hampers thorough numerical and theoretical investigations. We explore the potential of machine learning (ML) techniques to face these challenges, building on the algorithms that have revolutionized computer vision and image recognition. We present both successful ML applications and open problems for the future, such as transferability and interpretability of ML approaches. To foster a collaborative community effort, we also highlight the ‘GlassBench’ dataset, which provides simulation data and benchmarks for both 2D and 3D glass formers. We compare the performance of emerging ML methodologies, in line with benchmarking practices in image and text recognition. Our goal is to provide guidelines for the development of ML techniques in systems displaying slow dynamics and inspire new directions to improve our theoretical understanding of glassy liquids.

Connecting genomic results for psychiatric disorders to human brain cell types and regions reveals convergence with functional connectivity published in Nature Communications

Brain region connectivity. (Image by the Authors of the manuscript.)
Connecting genomic results for psychiatric disorders to human brain cell types and regions reveals convergence with functional connectivity
Shuyang Yao, Arvid Harder, Fahimeh Darki, Yu-Wei Chang , Ang Li, Kasra Nikouei, Giovanni Volpe, Johan N Lundström, Jian Zeng , Naomi Wray, Yi Lu, Patrick F Sullivan, Jens Hjerling-Leffler
Nature Communications 16, 395 (2025)
doi: 10.1038/s41467-024-55611-1
medRxiv: 10.1101/2024.01.18.24301478

Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability. Using functional MRI connectivity, we further confirmed the significance of the central and lateral amygdala, hippocampal body, and prefrontal cortex in distinguishing schizophrenia cases from controls. Our findings underscore the value of single-cell transcriptomics in understanding the polygenicity of psychiatric disorders and suggest a promising alignment of genomic, transcriptomic, and brain imaging modalities for identifying common biological targets.

Sreekanth K. Manikandan joins the Soft Matter Lab

(Photo by A. Ciarlo.)
Sreekanth K. Manikandan began working as a researcher at the Physics Department of the University of Gothenburg on December 9, 2024.

He received his Ph.D. in Theoretical Physics in 2020 from Stockholm University under the supervision of Supriya Krishnamurthy. His thesis, titled “Nonequilibrium Thermodynamics at the Microscopic Scales,” focused on finite and short-time fluctuations in non-equilibrium systems, as opposed to the large-time asymptotic properties studied within the framework of large deviation theory. One of the key outcomes of his Ph.D. research was the development of a method to infer entropy production rates directly from experimentally accessible trajectories in a model-independent manner.

Following his PhD, Sreekanth received the NORDITA postdoctoral fellowship for independent research. During this time, he expanded on his earlier work by developing generalizations of the inference scheme for entropy production and integrating it with machine-learning tools for practical inference of dissipative forces and entropy production from experimental data. Later, in 2022, he was awarded the Wallenberg Scholarship for postdoctoral research at Stanford, where he developed machine-learning-based non-equilibrium control techniques for targeted self-assembly and transport of biomolecular systems.

Currently he is interested in combining methods from Non-equilibrium Physics and Machine Learning to quantitatively characterize and control nanoscale biophysical processes.

Spatial clustering of molecular localizations with graph neural networks on ArXiv

MIRO employs a recurrent graph neural network to refine SMLM point clouds by compressing clusters around their center, enhancing inter-cluster distinction and background separation for efficient clustering. (Image by J. Pineda.)
Spatial clustering of molecular localizations with graph neural networks
Jesús Pineda, Sergi Masó-Orriols, Joan Bertran, Mattias Goksör, Giovanni Volpe and Carlo Manzo
arXiv: 2412.00173

Single-molecule localization microscopy (SMLM) generates point clouds corresponding to fluorophore localizations. Spatial cluster identification and analysis of these point clouds are crucial for extracting insights about molecular organization. However, this task becomes challenging in the presence of localization noise, high point density, or complex biological structures. Here, we introduce MIRO (Multimodal Integration through Relational Optimization), an algorithm that uses recurrent graph neural networks to transform the point clouds in order to improve clustering efficiency when applying conventional clustering techniques. We show that MIRO supports simultaneous processing of clusters of different shapes and at multiple scales, demonstrating improved performance across varied datasets. Our comprehensive evaluation demonstrates MIRO’s transformative potential for single-molecule localization applications, showcasing its capability to revolutionize cluster analysis and provide accurate, reliable details of molecular architecture. In addition, MIRO’s robust clustering capabilities hold promise for applications in various fields such as neuroscience, for the analysis of neural connectivity patterns, and environmental science, for studying spatial distributions of ecological data.