Spatial clustering of molecular localizations with graph neural networks on ArXiv

MIRO employs a recurrent graph neural network to refine SMLM point clouds by compressing clusters around their center, enhancing inter-cluster distinction and background separation for efficient clustering. (Image by J. Pineda.)
Spatial clustering of molecular localizations with graph neural networks
Jesús Pineda, Sergi Masó-Orriols, Joan Bertran, Mattias Goksör, Giovanni Volpe and Carlo Manzo
arXiv: 2412.00173

Single-molecule localization microscopy (SMLM) generates point clouds corresponding to fluorophore localizations. Spatial cluster identification and analysis of these point clouds are crucial for extracting insights about molecular organization. However, this task becomes challenging in the presence of localization noise, high point density, or complex biological structures. Here, we introduce MIRO (Multimodal Integration through Relational Optimization), an algorithm that uses recurrent graph neural networks to transform the point clouds in order to improve clustering efficiency when applying conventional clustering techniques. We show that MIRO supports simultaneous processing of clusters of different shapes and at multiple scales, demonstrating improved performance across varied datasets. Our comprehensive evaluation demonstrates MIRO’s transformative potential for single-molecule localization applications, showcasing its capability to revolutionize cluster analysis and provide accurate, reliable details of molecular architecture. In addition, MIRO’s robust clustering capabilities hold promise for applications in various fields such as neuroscience, for the analysis of neural connectivity patterns, and environmental science, for studying spatial distributions of ecological data.

Sergi Masò Orriols joins the Soft Matter Lab

(Photo by G. Pesce.)
Sergi Masò Orriols joined the Soft Matter Lab on 23rd January 2023.

Sergi is a PhD student at the Biomedicine Department of the University of Vic, Cataluña, Spain.

During his time at the Soft Matter Lab, he will be working on a biophysical application of deep learning.

He will stay in our lab till 2 June 2023.