Martin Selin, A. Ciarlo, G. Pesce, L. Bengtsson, J. Camuñas-Soler, V. Sundar Rajan, F. Westerlund, L. M. Wilhelmsson, I. Pastor, F. Ritort, S. B. Smith, C. Bustamante, G. Volpe
Date: 5 August 2025
Time: 4:30 PM – 4:45 PM PDT
Place: Conv. Ctr. Room 4
Single-molecule studies are vital for elucidating fundamental biological processes, including protein folding, DNA transcription, and replication. However, performing these experiments manually on individual molecules is notoriously time-consuming and costly. To address this challenge, we have developed a fully autonomous single-molecule force spectroscopy platform by integrating a custom-built optical tweezers instrument with real-time deep-learning-based image analysis and adaptive control protocols. Our system achieves human-level throughput in terms of experiments per hour while remaining robust enough to operate continuously for hours without intervention. We demonstrate the versatility of our platform by having it perform DNA pulling experiments on both lambda DNA and DNA hairpins fully autonomously. These results push the boundaries of high-throughput data collection in single-molecule biophysics, paving the way for merging single-molecule studies with large-scale, data-driven approaches—ultimately enabling new insights into the dynamic, transient states of complex biological systems.