Emiliano Gómez will defend his PhD thesis on 22 May 2024

Emiliano Gómez will defend his PhD thesis on the 22th of May at 10:30. The defense will take place in KA (Chemistry Department, Johanneberg Campus)

Title: Development and Application of a software to analyse networks with multilayer graph theory and deep learning

Abstract:
Network theory gives us the tools necessary to produce a model of our brain, how the brain is wired will give us a new level of insight into its functionality. The brain network, the connectome, is formed by structural links such as synapses or fiber pathways in the brain. This connectome might also be interpreted from a statistical relationship between the flow of information, or activation correlation between brain regions. Mapping these networks can be achieved by using neuroimaging, which allows obtaining information on the brain in vivo. Different neuroimaging modalities will capture different properties of the brain. Statistical analysis is necessary for extracting meaningful insights regarding the network patterns obtained from neuroimages. For this, huge data banks are a byproduct of the need for enough data to be able to tackle medical and biological questions.

In this work, we present a software “Brain Analysis using Graph Theory 2” (BRAPH 2) (Paper I), which addresses the need for a toolbox designed for both complex graph theory and deep learning analyses of different imaging modalities. With BRAPH 2, we offer the neuroimaging community a tool that is open-source, flexible, and intuitive. BRAPH 2, at its core, comes with multi-graph capabilities. For Paper II, we employed the power of multiplex and multigraph capabilities of BRAPH 2 to analyze sex differences in brain connectivity for an aging healthy population. Finally, for Paper III, BRAPH 2 has been adapted to two new graph measures (global memory capacity, and nodal memory capacity), which obtain a prediction of memory capacity using Reservoir Computing and relate this new measure to biological and cognitive characteristics of the cohort.

Supervisor: Giovanni Volpe
Examiner: Raimund Feifel
Opponent: Saikat Chatterjee, KTH, Stockholm
Committee: Marija Cvijovic, Alireza Salami, Wojciech Chachólski
Alternate board member: Mats Granath

Emiliano Gómez presented his half-time seminar on 29 November 2023

Emiliano Gomez Ruiz during his half-time seminar. (Photo by L. Pérez García.)
Emiliano Gómez completed the first half of his doctoral studies and he defended his half-time on the 29th of November 2023.

The presentation was conducted in a hybrid format, with part of the audience present in the Nexus room and the remainder connected through Zoom. The seminar comprised a presentation covering both his completed and planned projects, followed by a discussion and questions posed by his opponent, Prof. Martin Adiels.

The presentation commenced with an overview of his concluded projects. The first project with title “Brain Analysis using Graph Theory 2” is a software that uses Deep Learning and Graph Theory to analyse brain networks, this software is an open-source MATLAB with github “github.com/braph-software/BRAPH-2” and two projects in which this software was applied, first one on haematopoietic cell structural pattern taken from bone marrow and the second one is of memory capacity of aging brain networks using reservoir computing.

 

 

Soft Matter Lab members present at SPIE Optics+Photonics conference in San Diego, 21-25 August 2022

The Soft Matter Lab participates to the SPIE Optics+Photonics conference in San Diego, CA, USA, 21-25 August 2022, with the presentations listed below.

Giovanni Volpe is also co-author of the presentations:

Multiplex Connectome Changes across the Alzheimer’s Disease Spectrum Using Gray Matter and Amyloid Data published in Cerebral Cortex

Brain nodes. (Image taken from the article.)
Multiplex Connectome Changes across the Alzheimer’s Disease Spectrum Using Gray Matter and Amyloid Data
Mite Mijalkov, Giovanni Volpe, Joana B Pereira
Anna Canal-Garcia, Emiliano Gómez-Ruiz, Mite Mijalkov, Yu-Wei Chang, Giovanni Volpe, Joana B Pereira, Alzheimer’s Disease Neuroimaging Initiative
Cerebral Cortex, bhab429 (2022)
doi: 10.1093/cercor/bhab429

The organization of the Alzheimer’s disease (AD) connectome has been studied using graph theory using single neuroimaging modalities such as positron emission tomography (PET) or structural magnetic resonance imaging (MRI). Although these modalities measure distinct pathological processes that occur in different stages in AD, there is evidence that they are not independent from each other. Therefore, to capture their interaction, in this study we integrated amyloid PET and gray matter MRI data into a multiplex connectome and assessed the changes across different AD stages. We included 135 cognitively normal (CN) individuals without amyloid-β pathology (Aβ−) in addition to 67 CN, 179 patients with mild cognitive impairment (MCI) and 132 patients with AD dementia who all had Aβ pathology (Aβ+) from the Alzheimer’s Disease Neuroimaging Initiative. We found widespread changes in the overlapping connectivity strength and the overlapping connections across Aβ-positive groups. Moreover, there was a reorganization of the multiplex communities in MCI Aβ + patients and changes in multiplex brain hubs in both MCI Aβ + and AD Aβ + groups. These findings offer a new insight into the interplay between amyloid-β pathology and brain atrophy over the course of AD that moves beyond traditional graph theory analyses based on single brain networks.

Soft Matter Lab presentations at the SPIE Optics+Photonics Digital Forum

Seven members of the Soft Matter Lab (Saga HelgadottirBenjamin Midtvedt, Aykut Argun, Laura Pérez-GarciaDaniel MidtvedtHarshith BachimanchiEmiliano Gómez) were selected for oral and poster presentations at the SPIE Optics+Photonics Digital Forum, August 24-28, 2020.

The SPIE digital forum is a free, online only event.
The registration for the Digital Forum includes access to all presentations and proceedings.

The Soft Matter Lab contributions are part of the SPIE Nanoscience + Engineering conferences, namely the conference on Emerging Topics in Artificial Intelligence 2020 and the conference on Optical Trapping and Optical Micromanipulation XVII.

The contributions being presented are listed below, including also the presentations co-authored by Giovanni Volpe.

Note: the presentation times are indicated according to PDT (Pacific Daylight Time) (GMT-7)

Emerging Topics in Artificial Intelligence 2020

Saga Helgadottir
Digital video microscopy with deep learning (Invited Paper)
26 August 2020, 10:30 AM
SPIE Link: here.

Aykut Argun
Calibration of force fields using recurrent neural networks
26 August 2020, 8:30 AM
SPIE Link: here.

Laura Pérez-García
Deep-learning enhanced light-sheet microscopy
25 August 2020, 9:10 AM
SPIE Link: here.

Daniel Midtvedt
Holographic characterization of subwavelength particles enhanced by deep learning
24 August 2020, 2:40 PM
SPIE Link: here.

Benjamin Midtvedt
DeepTrack: A comprehensive deep learning framework for digital microscopy
26 August 2020, 11:40 AM
SPIE Link: here.

Gorka Muñoz-Gil
The anomalous diffusion challenge: Single trajectory characterisation as a competition
26 August 2020, 12:00 PM
SPIE Link: here.

Meera Srikrishna
Brain tissue segmentation using U-Nets in cranial CT scans
25 August 2020, 2:00 PM
SPIE Link: here.

Juan S. Sierra
Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks
26 August 2020, 11:50 AM
SPIE Link: here.

Harshith Bachimanchi
Digital holographic microscopy driven by deep learning: A study on marine planktons (Poster)
24 August 2020, 5:30 PM
SPIE Link: here.

Emiliano Gómez
BRAPH 2.0: Software for the analysis of brain connectivity with graph theory (Poster)
24 August 2020, 5:30 PM
SPIE Link: here.

Optical Trapping and Optical Micromanipulation XVII

Laura Pérez-García
Reconstructing complex force fields with optical tweezers
24 August 2020, 5:00 PM
SPIE Link: here.

Alejandro V. Arzola
Direct visualization of the spin-orbit angular momentum conversion in optical trapping
25 August 2020, 10:40 AM
SPIE Link: here.

Isaac Lenton
Illuminating the complex behaviour of particles in optical traps with machine learning
26 August 2020, 9:10 AM
SPIE Link: here.

Fatemeh Kalantarifard
Optical trapping of microparticles and yeast cells at ultra-low intensity by intracavity nonlinear feedback forces
24 August 2020, 11:10 AM
SPIE Link: here.

Note: the presentation times are indicated according to PDT (Pacific Daylight Time) (GMT-7)

BRAPH 2.0 : Upgrade to a graph theory software for the analysis of brain connectivity

BRAPH 2.0 : Upgrade to a graph theory software for the analysis of brain connectivity
Emiliano Gomez Ruiz, Anna Canal Garcia, Mite Mijalkov, Joana B. Pereira, Giovanni Volpe

There is increasing evidence showing that graph theory is a promising tool to study the human brain connectome. By representing brain regions and their connections as nodes and edges, it allows assessing properties that reflect how well brain networks are organized and how they become disrupted in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, epilepsy, schizophrenia, multiple sclerosis and autism. Here, we present BRAPH 2.0 (BRain Analysis using graPH theory version 2.0), which is a major update of the first object-oriented open source software written in Matlab for graph-theoretical analysis that also implements a graphical interface (GUI). BRAPH utilizes the capability of object-oriented programming paradigm to provide clear, robust, clean, modular, maintainable, and testable code.

Time: 24 August 2020
Place: Online
SPIE Link: here.