Talk by G. Volpe at SPIE OTOM XV, San Diego, 23 Aug 2018

Microscopic Engine Powered by Critical Demixing
Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe
SPIE Nanoscience + Engineering, Optical trapping and Optical Manipulation XV, San Diego (CA), USA
19-23 August 2018

During the last few decades much effort has gone into the miniaturization of machines down to the microscopic scale with robotic solutions indispensable in modern industrial processes and play a central role in many biological systems. There has been a quest in understanding the mechanism behind molecular motors and several approaches have been proposed to realize artificial engines capable of converting energy into mechanical work. These current micronsized engines depend on the transfer of angular momentum of light, are driven by external magnetic fields, due to chemical reactions or by the energy flow between two thermal reservoirs. Here we propose a new type of engine that is powered by the local, reversible demixing of a critical binary liquid. In particular, we show that an absorbing, optically trapped particle performs revolutions around the optical beam because of the emergence of diffusiophoresis and thereby produces work. This engines is adjustable by the optical power supplied, the temperature of the environment and the criticality of the system.

Reference: Schmidt et al., Phys. Rev. Lett. 120(6), 068004 (2018) DOI: 10.1103/PhysRevLett.120.068004

Stability of Brain Graph Measures published in Sci. Rep.

Stability of graph theoretical
measures in structural brain
networks in Alzheimer’s disease

Stability of graph theoretical measures in structural brain networks in Alzheimer’s disease
Gustav Mårtensson, Joana B. Pereira, Patrizia Mecocci, Bruno Vellas, Magda Tsolaki, Iwona Kłoszewska, Hilkka Soininen, Simon Lovestone, Andrew Simmons, Giovanni Volpe & Eric Westman
Scientific Reports 8, 11592 (2018)
DOI: 10.1038/s41598-018-29927-0

Graph analysis has become a popular approach to study structural brain networks in neurodegenerative disorders such as Alzheimer’s disease (AD). However, reported results across similar studies are often not consistent. In this paper we investigated the stability of the graph analysis measures clustering, path length, global efficiency and transitivity in a cohort of AD (N = 293) and control subjects (N = 293). More specifically, we studied the effect that group size and composition, choice of neuroanatomical atlas, and choice of cortical measure (thickness or volume) have on binary and weighted network properties and relate them to the magnitude of the differences between groups of AD and control subjects. Our results showed that specific group composition heavily influenced the network properties, particularly for groups with less than 150 subjects. Weighted measures generally required fewer subjects to stabilize and all assessed measures showed robust significant differences, consistent across atlases and cortical measures. However, all these measures were driven by the average correlation strength, which implies a limitation of capturing more complex features in weighted networks. In binary graphs, significant differences were only found in the global efficiency and transitivity measures when using cortical thickness measures to define edges. The findings were consistent across the two atlases, but no differences were found when using cortical volumes. Our findings merits future investigations of weighted brain networks and suggest that cortical thickness measures should be preferred in future AD studies if using binary networks. Further, studying cortical networks in small cohorts should be complemented by analyzing smaller, subsampled groups to reduce the risk that findings are spurious.

Review on Optical Tweezers published in J. Quant. Spectrosc. Rad. Transf.

Optical tweezers and their applications

Optical tweezers and their applications
Paolo Polimeno, Alessandro Magazzù, Maria Antonia Iata, Francesco Patti, Rosalba  Saija, Cristian Degli Esposti Boschi, Maria Grazia Donato, Pietro G. Gucciardi, Philip H. Jones, Giovanni Volpe & Onofrio M. Maragò
Journal of Quantitative Spectroscopy and Radiative Transfer 218(October 2018), 131—150 (2018)
DOI: 10.1016/j.jqsrt.2018.07.013

Optical tweezers, tools based on strongly focused light, enable optical trapping, manipulation, and characterisation of a wide range of microscopic and nanoscopic materials. In the limiting cases of spherical particles either much smaller or much larger than the trapping wavelength, the force in optical tweezers separates into a conservative gradient force, which is proportional to the light intensity gradient and responsible for trapping, and a non-conservative scattering force, which is proportional to the light intensity and is generally detrimental for trapping, but fundamental for optical manipulation and laser cooling. For non-spherical particles or at intermediate (meso)scales, the situation is more complex and this traditional identification of gradient and scattering force is more elusive. Moreover, shape and composition can have dramatic consequences for optically trapped particle dynamics. Here, after an introduction to the theory and practice of optical forces with a focus on the role of shape and composition, we give an overview of some recent applications to biology, nanotechnology, spectroscopy, stochastic thermodynamics, critical Casimir forces, and active matter.

Active Atoms and Interstitials published in Phys. Rev. Lett.

Active Atoms and Interstitials in Two-dimensional Colloidal Crystals

Active Atoms and Interstitials in Two-dimensional Colloidal Crystals
Kilian Dietrich, Giovanni Volpe, Muhammad Nasruddin Sulaiman, Damian Renggli, Ivo Buttinoni & Lucio Isa
Physical Review Letters 120(26), 268004 (2018)
DOI: 10.1103/PhysRevLett.120.268004
arXiv: 1710.08680

We study experimentally and numerically the motion of a self-phoretic active particle in two-dimensional loosely packed colloidal crystals at fluid interfaces. Two scenarios emerge depending on the interactions between the active particle and the lattice: the active particle either navigates throughout the crystal as an interstitial or is part of the lattice and behaves as an active atom. Active interstitials undergo a run-and-tumble-like motion, with the passive colloids of the crystal acting as tumbling sites. Instead, active atoms exhibit an intermittent motion, stemming from the interplay between the periodic potential landscape of the passive crystal and the particle’s self-propulsion. Our results constitute the first step towards the realization of non-close-packed crystalline phases with internal activity.

Seminar by G. Volpe at TU Dresden, 3 May 2018

Emergent Complex Behaviors in Active Matter
Giovanni Volpe
TU Dresden, Dresden, Germany
3 May 2018

After a brief introduction of active particles, I’ll present some recent advances on the study of active particles in complex and crowded environments.
First, I’ll show that active particles can work as microswimmers and microengines powered by critical fluctuations and controlled by light.
Then, I’ll discuss some examples of behavior of active particles in crowded environments: a few active particles alter the overall dynamics of a system; active particles create metastable clusters and channels; active matter leads to non-Boltzmann distributions and alternative non-equilibrium relations; and active colloidal molecules can be created and controlled by light.
Finally, I’ll present some examples of the behavior of active particles in complex environments: active particles often perform 2D active Brownian motion; active particles at liquid-liquid interfaces behave as active interstitials or as active atoms; and the environment alters the optimal search strategy for active particles in complex topologies.

Invited talk by G. Volpe at the 9th Nordic Workshop on Statistical Physics, Stockholm, 21-23 Mar 2018

Recent Progress on the Experimental Study of Active Matter
Giovanni Volpe
The 9th Nordic Workshop on Statistical Physics: Biological, Complex and Non-equilibrium Systems, NORDITA, Stockholm, Sweden
21-23 March 2018

After a brief introduction of active particles, I’ll present some recent advances on the study of active particles in complex and crowded environments.
First, I’ll show that active particles can work as microswimmers and microengines powered by critical fluctuations and controlled by light.
Then, I’ll discuss some examples of behavior of active particles in crowded environments: a few active particles alter the overall dynamics of a system; active particles create metastable clusters and channels; active matter leads to non-Boltzmann distributions and alternative non-equilibrium relations; and active colloidal molecules can be created and controlled by light.
Finally, I’ll present some examples of the behavior of active particles in complex environments: active particles often perform 2D active Brownian motion; active particles at liquid-liquid interfaces behave as active interstitials or as active atoms; and the environment alters the optimal search strategy for active particles in complex topologies.

Special Issue on Biophotonics published in Biomed. Opt. Express

Special Issue on Biophotonics

Biophotonics feature: introduction
Paolo Campagnola, Daniel Cote, Francesco Pavone, Peter Reece, Vivek J. Srinivasan, Tomasz Tkaczyk & Giovanni Volpe
Biomedical Optics Express 9(3), 1229–1231 (2018)
DOI: 10.1364/BOE.9.001229

Seminar by G. Volpe at Chalmers University, Gothenburg, 15 Feb 2018

Active Matter in Complex and Crowded Environments
Giovanni Volpe
Statistics and Biomathematics Seminar
Chalmers University of Technology, Gothenburg, Sweden
15 February 2018

13:15 seminar room MV:L14, Chalmers tvärgata 3

https://www.chalmers.se/en/departments/math/research/seminar-series/statistics-and-biomathematics-seminar/Pages/default.aspx

Microscopic Critical Engine featured in Phys.Org

Microscopic engine powered by critical demixing

Our recent article Microscopic engine powered by critical remixing
by Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe, published in Physical Review Letters 120(6), 068004 (2018) has been featured in “Tiny engine powered by demixing fluid” Phys.Org (February 12, 2018)

Microscopic Critical Engine featured in Optics & Photonics News

Microscopic engine powered by critical demixing

Our recent article Microscopic engine powered by critical remixing
by Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe, published in Physical Review Letters 120(6), 068004 (2018) has been featured in “Laser + Critical Liquid = Micro-Engine”, Optics & Photonics News (February 12, 2018)

Optics & Photonics News (OPN) is The Optical Society’s monthly news magazine. It provides in-depth coverage of recent developments in the field of optics and offers busy professionals the tools they need to succeed in the optics industry, as well as informative pieces on a variety of topics such as science and society, education, technology and business. OPN strives to make the various facets of this diverse field accessible to researchers, engineers, businesspeople and students. Contributors include scientists and journalists who specialize in the field of optics.