News

Start-up “Lucero Bio” among the best 5 business ideas in West Sweden

Falko Schmidt and other researchers at the University of Gothenburg, in collaboration with Business students at the Chalmers School of Entrepreneurship, have received early acclaimfor their Start-up idea “Lucero Bio”.

Lucero Bio was ranked among one of the top 5 business ideas in West Sweden by Venture Cup Sweden. Out of the 376 ideas that were submitted to the competition, nearly half came from the western region of Sweden.

The start-up is aiming to make cutting-edge laser technology easy to use and available to anyone by combining it with commercial microscope. The product and software combo utilizes optical tweezers in a brand-new way – and bridges the gap between physics and other scientific fields that would greatly benefit from easier access to this tool.

Team components: Christopher Jacklin, Rich Zapata Rosas, Felix Mossberg, Falko Schmidt, Alejandro Diaz Tormo and Martin Mojica-Benavides.

More information:
Press release, in Swedish.
Top 20 list of the 2019 winners, in Swedish.

Poster presentation by F. Schmidt at the Light at the Nanoscale conference, 5 December 2019

Light-induced phase separation power novel micro machines
Falko Schmidt, and Giovanni Volpe
Light at the Nanoscale Conference, Chalmers University, Gothenburg, Sweden
5 December 2019, 16:30-18:30

Focused laser light is used to trap a micronsized absorbing particle around its beam center where it performs constant orbital rotation. The light-induced local phase separations create a concentration gradient on which the particle moves along. Large patches of absorbing material on the particle’s surface give rise to a torque required for steady rotation1

Phase separation is a phenomena that commonly exists in nature, from the freezing of ice to the intrinsic mechanism of the cell to order matter. We are exploiting phase separations to produce new types of miniaturised machines, in particular micron and nano sized engines1as well as to form self-assembled colloidal molecules2. We control their behaviour using only light and varying its ambient temperature making this a simple tool to study complex matter3. This will enhance the development of future medicine where nano robots deliver drugs specifically to the local infection side.

References:1. F. Schmidt et al. Microscopic engine powered by critical demixingPhys Rev Lett 120, 068004, 2018

2. F. Schmidt et al. Light-controlled assembly of active colloidal molecules, J Chem Phys150, 094905, 2019

3. S. Bo et al. Measurement of anomalous diffusion using recurrent neural networksPhys Rev E 100, 010102(R), 2019

DeepTrack selected by Optics & Photonics News as one of the most exciting optics discoveries in 2019

Optics & Photonics News has picked Saga Helgadóttir and Aykut Argun’s work on deep learning for particle tracking (DeepTrack) as a top break-through of the year.

“This has been a really good year for me, research-wise. My publication, presenting a new AI method, garnered a lot of attention,” says Saga Helgadóttir, PhD at the Department of Physics.

The research article in question, which is now included in Optics & Photonics News’ best-of-2019 list, identifies a new way of implementing neural networks and machine learning in order to track particle motion and study surrounding microenvironments.

After the publication in mid-April, Saga Helgadóttir was contacted by both national and international press to talk about her discoveries. She has also been invited to visit research groups abroad and was a speaker at the AI in Health and Health in AI conference held in Gothenburg in August.

Currently, Saga Helgadottir is collaborating with a group of scientists at Sahlgrenska’s Wallenberg Laboratory. They are working on new ways of using deep learning in the medical field.

“I started my PhD research studying bio-hybrid microswimmers, but ended up more within the area of artificial intelligence and optics. I like this work a lot, and the positive response to my publication earlier this year has allowed me to establish myself in the AI-field.”

Text: Carolina Svensson

List of highlighted research from 2019: Optics in 2019

Saga Helgadottir’s featured summary: Deep Learning for Particle Tracking

Original press release about the research: She has discovered a new method of using AI

Invited talk by G. Volpe at BRC Day “Biomaterials meets AI”, Gothenburg, Sweden, 12 November 2019

Machine learning as a tool for the natural sciences: Opportunities and challenges
Giovanni Volpe
Invited Talk at BRC Day “Biomaterials meets AI”, University of Gothenburg, Gothenburg, Sweden, 12 November 2019

Abstract: Data-driven machine-learning methods are more and more widely used in the natural sciences. Machine learning offers unprecedented opportunities, but it also poses unexpected practical and fundamental challenges. Most importantly, machine-learning methods often work as black boxes, and therefore it can be difficult to understand and interpret their results. Here, we present an overview of the current state of the art of the adoption of machine learning in active-matter research. Finally, we discuss the opportunities and challenges that are emerging, highlighting how active matter and machine learning can work together for mutual benefit.

Bio: Giovanni Volpe is Associate Professor at the University of Gothenburg, where he leads the Soft Matter Lab (http://www.softmatterlab.org/).
He has published more than 80 articles on diverse topics including optical trapping, active matter, neurosciences, and machine learning.
He has co-authored the book “Optical Tweezers: Principles and Applications” (Cambridge University Press, 2015).
He is the recipient the ERC Starting Grant ComplexSwimmers, coordinator of the MSCA Innovative Training Networks ActiveMatter, and the KAW research grant “Active Matter Goes Smart”.
He is one of the chairs of the Conference Emerging Topics in Artificial Intelligence at the SPIE Optics & Photonics Meeting held annually in San Diego (CA).

Introductory Talk at CECAM Workshop “Active Matter and Artificial Intelligence” by G. Volpe, Lausanne, Switzerland, 1 October 2019

Machine learning for active matter
Giovanni Volpe
Introductory Talk at CECAM Workshop “Active Matter and Artificial Intelligence”
CECAM-HQ-EPFL, Lausanne, Switzerland
30 September – 2 October, 2019

Data-driven machine-learning methods are more and more widely used in the natural sciences. Active-matter research is no exception and has recently started experiment- ing machine-learning approaches. Machine learning offers unprecedented opportunities, but it also poses unexpected practical and fundamental challenges. Most importantly, machine-learning methods often work as black boxes, and therefore it can be difficult to understand and interpret their results. Here, we present an overview of the current state of the art of the adoption of machine learning in active-matter research. Finally, we discuss the opportunities and challenges that are emerging, highlighting how active matter and machine learning can work together for mutual benefit.

Invited talk by G. Volpe at RIAO/Optilas 2019, Cancun, Mexico, 23 Sep 2019

Deep Learning Applications in Digital Video Microscopy and Optical Micromanipulation
Saga Helgadottir, Aykut Argun, Giovanni Volpe
Invited talk at RIAO/Optilas 2019, Cancun, Mexico, 23-27 September 2019

Since its introduction in the mid 90s, digital video microscopy has become a staple for the analysis of data in optical trapping and optical manipulation experiments [1]. Current methods are able to predict the location of the center of a particle in ideal condition with high accuracy. However, these methods fail as the signal-to-noise ratio (SNR) of the images decreases or if there are non-uniform distortions present in the images. Both these conditions are commonly encountered in experiments. In addition, all these methods require considerable user input in terms of analysis parameters, which introduces user bias. In order to automatize the tracking process algorithms using deep learning have been successfully introduced but have not proved to be usable for practical applications.

Here, we provide a fully automated deep learning tracking algorithm with sub-pixel precision in localizing single particle and multiple particles’ positions from image data [2]. We have developed a convolutional neural network that is pre-trained on simulated single particle images in varying conditions of, for example, particle intensity, image contrast and SNR.

We test the pre-trained network on an optically trapped particle both in ideal condition and challenged condition with low SNR and non-uniform distortions [3]. This pre-trained network accurately predicts the location the trapped particle and a comparison of detected trajectories, the distribution of the particle position and the power spectral density of the particle trajectory clearly shows that our algorithm outperforms tracking by radial symmetry [4]. Our algorithm is also able to track non-ideal images with multiple Brownian particles as well as swimming bacteria that are problematic for traditional methods.

In conclusion, our algorithm outperforms current methods in precision and speed of tracking non-ideal images, while eliminating the need for user supervision and therefore the introduction of user biases. 

References

[1] John C Crocker, David G Grier, Journal of Colloid and Interface Science 179, 298–310 (1996).

[2] Saga Helgadottir, Aykut Argun, Giovanni Volpe, Optica 6, 506–513 (2019).

[3] Philip H Jones, Onofrio M Maragò, Giovanni Volpe, Optical tweezers: Principles and applications. Cambridge University Press, 2015.

[4] Raghuveer Parthasarathy. Nature Methods 9724 (2012).

Saga Helgadottir interviewed by Curie, a magazine issued by the Swedish Research Council

Saga Helgadottir discussed her research with Curie, a magazine issued by the Swedish Research Council. The article gives examples of how AI is used in many research disciplines. Read the article on Curie’s webpage here.

Seminar by G. Volpe at the Department of Chemistry, University of Gothenburg, 19 Sep 2019

Soft Matter Meets Deep Learning
Giovanni Volpe
Department of Chemistry, University of Gothenburg, Sweden
19 September 2019

After a brief overview of artificial intelligence, machine learning and deep learning, I will present a series of recent works in which we have employed deep learning for applications in photonics and active matter. In particular, I will explain how we employed deep learning to enhance digital video microscopy [1], to estimate the properties of anomalous diffusion [2], and to improve the calculation of optical forces. Finally, I will provide an outlook for the application of deep learning in photonics and active matter.

References

[1] S. Helgadottir, A. Argun and G. Volpe, Digital video microscopy enhanced by deep learning. Optica 6(4), 506—513 (2019)
doi: 10.1364/OPTICA.6.000506

[2] S. Bo, F Schmidt, R Eichborn and G. Volpe, Measurement of Anomalous Diffusion Using Recurrent Neural Networks. arXiv: 1905.02038