Intercellular Communication Induces Glycolytic Synchronisation Waves published in PNAS

Intercellular communication induces glycolytic synchronization waves between individually oscillating cells
Intercellular communication induces glycolytic synchronization waves between individually oscillating cells
Martin Mojica-Benavides, David D. van Niekerk, Mite Mijalkov, Jacky L. Snoep, Bernhard Mehlig, Giovanni Volpe, Caroline B. Adiels & Mattias Goksör
PNAS 118(6), e2010075118 (2021)
doi: 10.1073/pnas.2010075118
arXiv: 1909.05187

Metabolic oscillations in single cells underlie the mechanisms behind cell synchronization and cell-cell communication. For example, glycolytic oscillations mediated by biochemical communication between cells may synchronize the pulsatile insulin secretion by pancreatic tissue, and a link between glycolytic synchronization anomalies and type-2 diabetes has been hypotesized. Cultures of yeast cells have provided an ideal model system to study synchronization and propagation waves of glycolytic oscillations in large populations. However, the mechanism by which synchronization occurs at individual cell-cell level and overcome local chemical concentrations and heterogenic biological clocks, is still an open question because of experimental limitations in sensitive and specific handling of single cells. Here, we show how the coupling of intercellular diffusion with the phase regulation of individual oscillating cells induce glycolytic synchronization waves. We directly measure the single-cell metabolic responses from yeast cells in a microfluidic environment and characterize a discretized cell-cell communication using graph theory. We corroborate our findings with simulations based on a kinetic detailed model for individual yeast cells. These findings can provide insight into the roles cellular synchronization play in biomedical applications, such as insulin secretion regulation at the cellular level.

Press release on joint research on intercellular communication mechanism by Biological Physics Lab and Soft Matter Lab

The article Intercellular Communication Induces Glycolytic Synchronisation Waves published in PNAS has been featured in the News of the Faculty of Science of Gothenburg University.

Here the links to the press releases:
Swedish: Forskare har knäckt koden för cellkommunikation
English: Researchers have broken the code for cell communication

Lucero nominated for “Best HealthTech Startup” in Sweden

The spinoff Lucero emerged a year ago as a joint effort between the Soft Matter Lab, the Biological Physics Group and the Chalmers School of Entrepreneurship. The idea of providing a non-invasive micromanipulation platform recently received initial support from the European Research Council (Proof of Concept) and Chalmers Ventures. Lucero has now been nominated for “Best HealthTech Startup” in the Swedish national final of the prestigious Nordic Startup Awards. National winners are partially determined by public vote and will go on to compete against the winners from Iceland, Finland, Norway, and Denmark in the Nordic Final.

The public voting period is now open and the winner of each category will be announced on November 26th.

To vote, click here.

“The first prototype is on its way and we hope to start the initial tests with biological samples pretty soon, all thanks to the support from Chalmers Ventures and Prof. Giovanni Volpe.” Alejandro Diaz, co-founder of Lucero.

Lucero is joined by four other up-and-coming Swedish startups in the HealthTech category, including Spermosens, tendo, Flow Neuroscience, and Deversify.

Other categories include: Startup of the Year, Best Newcomer, Founder of the Year, Investor of the Year, Best Co-working Space, Best Accelerator/Incubator Program, Ecosystem Hero of the Year, Best Virtual Teamwork Solution, People’s Choice, and Best Climate Impact Startup.

The Nordic Startup Awards is part of the Global Startup Awards, which is a large startup competition that aims to recognize and connect entrepreneurs, investors, accelerator/incubator programs, and government initiatives from all around the world.

Follow Lucero’s updates on Lucerobio.com/, LinkedIn, and Instagram.

Links:
LinkedIn: https://www.linkedin.com/company/lucero/
Instagram: https://www.instagram.com/lucero_bio/
Lucerobio: https://www.lucerobio.com/

Start-up “Lucero” Semi-finalist in SPIE Startup Challenge

Our idea Lucero, has reached the semi-final for the SPIE Start-up challenge, where will pitch in front of a jury at Photonics West in San Francisco, CA, USA on the 4th of February 2020.

Lucero will compete, among other 41 semifinalists, for cash prizes and business support.

In addition, Lucero was awarded one of the three Early Stage Entrepreneurship Travel Grants to attend the semi-final.

The start-up is aiming to make cutting-edge laser technology easy to use and available to anyone by combining it with commercial microscope. The product and software combo utilizes optical tweezers in a brand-new way – and bridges the gap between physics and other scientific fields that would greatly benefit from easier access to this tool.

In December, Lucero was ranked among the best 5 business ideas in West Sweden.

Team components: Christopher Jacklin, Rich Zapata Rosas, Felix Mossberg, Falko Schmidt, Alejandro Diaz Tormo and Martin Mojica-Benavides.

Links: Lucero Homepage

Start-up “Lucero Bio” among the best 5 business ideas in West Sweden

Falko Schmidt and other researchers at the University of Gothenburg, in collaboration with Business students at the Chalmers School of Entrepreneurship, have received early acclaimfor their Start-up idea “Lucero Bio”.

Lucero Bio was ranked among one of the top 5 business ideas in West Sweden by Venture Cup Sweden. Out of the 376 ideas that were submitted to the competition, nearly half came from the western region of Sweden.

The start-up is aiming to make cutting-edge laser technology easy to use and available to anyone by combining it with commercial microscope. The product and software combo utilizes optical tweezers in a brand-new way – and bridges the gap between physics and other scientific fields that would greatly benefit from easier access to this tool.

Team components: Christopher Jacklin, Rich Zapata Rosas, Felix Mossberg, Falko Schmidt, Alejandro Diaz Tormo and Martin Mojica-Benavides.

More information:
Press release, in Swedish.
Top 20 list of the 2019 winners, in Swedish.