Fractal Plasmonics published in Opt. Express

Fractal plasmonics: Subdiffraction focusing and broadband spectral response by a Sierpisky nanocarpet

Fractal plasmonics: Subdiffraction focusing and broadband spectral response by a Sierpisky nanocarpet
Giorgio Volpe, Giovanni Volpe & Romain Quidant
Optics Express 19(4), 3612—3618 (2011)
DOI: 10.1364/OE.19.003612

Plasmonic nanostructures offer a great potential to enhance light-matter interaction at the nanometer scale. The response upon illumination at a given wavelength and polarization is governed by the characteristic lengths associated to the shape and size of the nanostructure. Here, we propose the use of engineered fractal plasmonic structures to extend the degrees of freedom and the parameters available for their design. In particular, we focus on a paradigmatic fractal geometry, namely the Sierpinski carpet. We explore the possibility of using it to achieve a controlled broadband spectral response by controlling the degree of its fractal complexity. Furthermore, we investigate some other arising properties, such as subdiffraction limited focusing and its potential use for optical trapping of nano-objects. An attractive advantage of the focusing over more standard geometries, such as gap antennas, is that it occurs away from the metal surface (≈ 80nm) at the center of the nanostructure, leaving an open space accessible to objects for enhanced light-matter interaction.

Surface Plasmon Optical Tweezers published in Phys. Rev. Lett.

Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range

Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range
Maurizio Righini, Giovanni Volpe, Christian Girard, Dmitri Petrov & Romain Quidant
Physical Review Letters 100(18), 186804 (2008)
DOI: 10.1103/PhysRevLett.100.186804

We present a quantitative analysis of 2D surface plasmon based optical tweezers able to trap microcolloids at a patterned metal surface under low laser intensity. Photonic force microscopy is used to assess the properties of surface plasmon traps, such as confinement and stiffness, revealing stable trapping with forces in the range of a few tens of femtonewtons. We also investigate the specificities of surface plasmon tweezers with respect to conventional 3D tweezers responsible for their selectivity to the trapped specimen’s size. The accurate engineering of the trapping properties through the adjustment of the illumination parameters opens new perspectives in the realization of future optically driven on-a-chip devices.

Surface Plasmon Radiation Forces published in Phys. Rev. Lett.

Surface plasmon radiation forces

Surface plasmon radiation forces
Giovanni Volpe, Romain Quidant, Gonçal Badenes & Dmitri Petrov
Physical Review Letters 96(23), 238101 (2006)
DOI: 10.1103/PhysRevLett.96.238101

We report the first experimental observation of momentum transfer from a surface plasmon to a single dielectric sphere. Using a photonic force microscope, we measure the plasmon radiation forces on different polystyrene beads as a function of their distance from the metal surface. We show that the force magnitude at resonance is strongly enhanced compared to a nonresonant illumination. Measurements performed as a function of the probe particle size indicate that optical manipulation by plasmon fields has a strong potential for optical sorting.