Presentation by M.Selin at SPIE-OTOM, San Diego, 6 August 2025

Illustration of adsorption process of a polymer coated particle. A single particle is brought to a liquid-liquid interface using an optical tweezers and once the polymer shell makes contact with the interface the particle immediately jumps into the interface. (Image by M. Selin.)
Mapping the adsorption dynamics of core-shell particles at liquid-liquid interfaces with optical tweezers
Martin Selin, Maret Ickler, Gerardo Campos-Villalobos, Fabrizio Camerin, Nicolas Vogel, Antonio Ciarlo, Giovanni Volpe, and Marcel Rey
Date: 6 August 2025
Time: 4:30 PM – 4:45 PM PDT
Place: Conv. Ctr. Room 3

Colloidal systems are integral to industries such as food and cosmetics, where liquid-liquid interfaces—like oils dispersed in water—are common. Whether colloidal particles adsorb to these interfaces depends on multiple factors such as particle surface chemistry, pH and salinity.

Here, we investigate how core–shell particles breach a liquid-liquid interface by using optical tweezers to gently push the particles into dodecane-water interfaces formed by microbubbles. Our core–shell particles feature a silica core and a PDMAEMA shell and by varying the amount of monomer added during synthesis the size of the shell can be tuned. Using the tweezers we measure the extent of the polymer shell. Importantly, we find that uncoated silica particles do not adsorb in pure water, whereas polymer coated particles absorb rapidly once the polymer layer contacts the interface, also when the core itself remains microns away. The longer the polymer the greater the distance from which the particle absorbs.

We also observe similar adsorption other polymer shells like PNIPAM and PVP, indicating that the presence of a polymer coating, rather than its specific chemical composition, is the key factor governing adsorption. At low and high pH the polymer shell contracts, also the binding energy becomes weaker making the absorption slower. In very acidic conditions the binding is so weak that the optical tweezers can pull particles out from the interface, allowing us to directly observe individual polymers detaching. These findings provide new insight into how polymer coatings dictate particle-interface interactions, paving the way for improved control of colloidal behavior.

SmartTrap: Automated Precision Experiments with Optical Tweezers on ArXiv

Illustration of three different experiments autonomously performed by the SmartTrap system: DNA pulling experiments (top), red blood cell stretching (bottom left), and particle-particle interaction measurements (bottom right). (Image by M. Selin.)
SmartTrap: Automated Precision Experiments with Optical Tweezers
Martin Selin, Antonio Ciarlo, Giuseppe Pesce, Lars Bengtsson, Joan Camunas-Soler, Vinoth Sundar Rajan, Fredrik Westerlund, L. Marcus Wilhelmsson, Isabel Pastor, Felix Ritort, Steven B. Smith, Carlos Bustamante, Giovanni Volpe
arXiv: 2505.05290

There is a trend in research towards more automation using smart systems powered by artificial intelligence. While experiments are often challenging to automate, they can greatly benefit from automation by reducing labor and  increasing reproducibility. For example, optical tweezers are widely employed in single-molecule biophysics, cell biomechanics, and soft matter physics, but they still require a human operator, resulting in low throughput and limited repeatability. Here, we present a smart optical tweezers platform, which we name SmartTrap, capable of performing complex experiments completely autonomously. SmartTrap integrates real-time 3D particle tracking using
deep learning, custom electronics for precise feedback control, and a microfluidic setup for particle handling. We demonstrate the ability of SmartTrap to operate continuously, acquiring high-precision data over extended periods of time, through a series of experiments. By bridging the gap between manual  experimentation and autonomous operation, SmartTrap establishes a robust and open source framework for the next generation of optical tweezers research, capable of performing large-scale studies in single-molecule biophysics, cell mechanics, and colloidal science with reduced experimental
overhead and operator bias.

Invited talk by M. Selin at University of Münster, 11 April 2025

Illustration of polymer detachments. At low pH polymers attach weakly to liquid-liquid interfaces. Having the polymer attached also to a colloidal particle allows for an optical tweezers to pull the polymer loose and to detect single detachments. (Image by M. Selin.)
Optical Tweezers applications: From particle adsorption to single molecules.

Martin Selin
Date: 11 April 2025
Time: 10:30
Place: University of Münster, Germany

Optical tweezers are powerful tools for probing microscale forces in systems ranging from colloidal particles to single molecules. Here, we demonstrate their use in two different fields. First, by trapping individual colloidal particles, we study their adsorption dynamics at liquid–liquid interfaces, highlighting the critical role of surface chemistry and the presence of polymer shells. We also observe reversible polymer attachments and stretching. Second, we apply tweezers to study single-molecule mechanics. By automating these complex biophysical experiments, we enable high-throughput measurements of molecular dynamics. Our results suggest that, like DNA, synthetic polymers can be effectively described by the worm-like chain model.

Presentation by M. Selin at Ostwald Colloquium, 8 April 2025

Illustration of adsorption process of a polymer coated particle. A single particle is brought to a liquid-liquid interface using an optical tweezers and once the polymer shell makes contact with the interface the particle immediately jumps into the interface. (Image by M. Selin.)
Optical tweezers reveal how polymer coated particles jump into liquid-liquid interfaces

Martin Selin
Date: 8 April 2025
Time: 17:40
Place: Center for Interdisciplinary Research, Bielefeld University, Germany

Colloidal particles typically require salt to overcome electrostatic barriers and adsorb to liquid-liquid interfaces. Here, we show that coating particles with polymers enables spontaneous adsorption without salt. Our model system consists of silica cores coated with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). Using optical tweezers, we track individual particles showing that the polymer shell makes particles jump into a dodecane–water interface. This behavior extends to other polymers. By tuning pH, we control polymer swelling and adsorption distance. At very low pH, the attachment to the interface is weak enough that the optical tweezers can pull particles out from the interface. During this desorption process we observe single polymers detaching. These findings offer new approaches for designing responsive emulsions.

Presentation by M.Selin at S3IC, Barcelona, 23 November 2023

3d Visualization of the full Minitweezers 2.0 system. (Illustration by M. Selin.)
Minitweezers 2.0, Paving the way for fully autonomous optical tweezers experiments.
Martin Selin
Single-Molecule Sensors and NanoSystems International Conference – S3IC 2023
23 November 2023, 11:51 (CET)

Since their invention by Ashkin et al. in the 1980s, optical tweezers have evolved into an indispensable tool in physics, especially in biophysics, with applications spanning from cell sorting to stretching single DNA strands. By the 2000s, commercial systems became available. Nevertheless, owing to their unique requirements, many labs prefer to construct their own, often drawing inspiration from existing designs.

A prominent optical tweezers design is the “miniTweezers” system, pioneered by Bustamante’s group in the late 1990s. This system has been widely adopted globally for force spectroscopy experiments on single molecules, including DNA, proteins, and RNA.

In this presentation, we unveil an advanced iteration of the miniTweezers. By enhancing its control and acquisition capabilities, we’ve augmented its versatility, enabling new experiment types. A significant breakthrough is the integration of real-time image feedback, which paves the way for automated procedures via deep learning-based image analysis, the first of which we demonstrate in this presentation.

We showcase this system’s capabilities through three distinct experiments:

  1. A pulling experiment on a λ-DNA strand. By tethering DNA between two polystyrene beads – one anchored in a micropipette and the other manipulated by the tweezer – we illustrate near-complete automation, with the system autonomously handling bead trapping, attachment of the DNA and the pulling procedure.
  2. An exploration of Coulomb interactions between charged particles. Here, one particle remains in a micropipette, while the other orbits the stationary bead, providing a 3D map of the interaction.
  3. A non-contact stretching experiment on red blood cells is conducted under low osmotic pressure conditions. Modulating the laser power induces cell elongation along the laser’s propagation direction. By correlating this elongation with the optical force exerted by the lasers, we present a simple and non-invasive method to measure membrane rigidity.

In summary, these advancements mark a significant leap in the capabilities and applications of optical tweezers in biophysics. As we push the boundaries of automation and precision, we envision a future where such instruments can unravel even more intricate molecular interactions and cellular mechanics, setting the stage for groundbreaking discoveries.

Presentation by M. Selin at SBE congress, 30 June 2023

Illustration of a DNA hairpin being unzipped by an optical tweezers. (Illustration by M. Selin.)
Automating optical tweezers experiments using deep learning and custom electronics
Martin Selin
30 June 2023, 13:00 CEST

Optical tweezers are powerful tools for manipulating and studying the mechanical properties of single biomolecules, such as DNA. However, conducting such experiments manually is both time-consuming and labor-intensive limiting the amount of data collectable. In this work, we present a method to automate optical tweezers with the use of deep learning applying it to DNA pulling experiments.

A typical DNA pulling experiment can be divided into three main steps, each of which we have automated. The first is positioning of a bead in a micropipette(or secondary optical trap), second is connecting DNA of a another optically trapped bead with the bead in the micropipette and lastly the stretching of the DNA by moving the trapped bead while monitoring the force.

We have used deep learning, in particular a unet, to track beads and identify important features in the sample such as the micropipette. Combining this with realtime feedback allows the system to both trap beads and carefully position trap beads.

We demonstrate the viability of our method by stretching lambda DNA, showing human like reliability in performing the experiments. We expect our method to find use in the study of small biomolecules enabling more and faster data collection as well as longer running experiments.

Martin Selin presented his half-time seminar on 2 September 2022

Martin Selin’s half-time seminar: Opponent Dag Hanstorp (left), Martin Selin (right). (Photo by H. P. Tanabalan.)
Martin Selin completed the first half of his doctoral studies and defended his half-time on the 2nd of September 2022.

The presentation was held in hybrid format, with part of the audience in the Von Bahr room and the rest connected through zoom. The half-time consisted of a presentation of Martins two main projects followed by a discussion and questions proposed by Martins opponent Dag Hanstorp.

The presentation started providing a background on optical tweezers and continued with the ongoing project of positioning quantum dots using optical tweezers. Thereafter the presentation continued with the Minitweezers project. Data on DNA stretching was presented and shown to be in good agreement with results found in literature. Lastly the future of the two projects were outlined. Specifically, how to address the challenging task of detecting moving quantum dots and how to improve on the Minitweezers system through automation.

Martin Selin during his half-time seminar. (Photo by L. Natali.)