Lovisa Hagstöm, Erik Holmberg, Eliza Nordén, Teodor Norrestad, Martin Selin & Lisa Sjöblom defended their Bachelor Thesis. Congrats!

Lovisa Hagstöm, Erik Holmberg, Eliza Nordén, Teodor Norrestad, Martin Selin & Lisa Sjöblom defended their Bachelor Thesis at Chambers University of Technology on 23 May 2017.

Title: Autonoma agenter i komplexa miljöer — En studie av tidsfördröjningens inverkan på kollektiva beteenden

Abstract: Interagerande autonoma agenter är ett högintressant och relativt outforskat område. Syftet med detta arbete är att utforska grundläggande metoder för att simulera aktiva agenter som påverkas av ett intensitetsfält med en fördröjning. Fördröjningen mellan agentens indata och dess reaktion på denna visar sig vara väsentlig vad gäller styrandet av dess beteende. Efter att de grundläggande metoderna är etablerade ämnar återstoden av arbetet att fördjupa sig i tre olika aspekter av autonoma agenter. Den rotationella diffusionskoefficienten, DR, visar sig vara en parameter som likt farten kan användas för att styra agenternas beteende. Dock syns inga kvalitativa skillnader i beteendet om inte en fördröjning införs. Med en positiv fördröjning söker sig agenterna till områden med stort DR och med en negativ söker de sig till områden med litet DR. Intressanta beteenden framkallas också genom att låta en aktiv agent röra sig i en propagerande vågpotential, både i en och två dimensioner. För det endimensionella vågfallet kan man med hjälp av fördröjningen styra om agenten färdas mot eller från vågkällan. Agenter som interagerar via tvådimensionella vågpulser kan manipuleras till att samlas eller sprida sig, beroende på fördröjningens karaktär. Slutligen utreds möjligheterna att använda autonoma aktiva agenter för att simulera rovdjur och bytesdjur. För att realisera detta används fördröjningen som styrande parameter. Utöver detta utvecklas en enkel evolutionsalgoritm där byten och rovdjur visar sig kunna anpassa sig efter varandra. Fördröjningar visar sig överlag vara ett kraftfullt verktyg för att påverka beteendet hos aktiva agenter med stor potential i framtida applikationer.

Supervisor: Giovanni Volpe, Department of Physics, University of Gothenburg
Examiner: Lena Falk, Department of Physics, University of Gothenburg

Erçağ Pinçe defended his PhD Thesis. Congrats!

Erçağ Pinçe defended his PhD thesis on 21 October 2016. Assist. Prof. Evren Doruk Engin (Ankara University), Assist. Prof. Giovanni Volpe (Bilkent University), Assist. Prof. Balázs Hétenyi (Bilkent University), Assoc. Prof. Fatih Ömer İlday (Bilkent University) and Prof. Alper Kiraz (Koç University) participated as thesis committee members.

Erçağ Pinçe investigated the role that spatial disorder can play to alter collective dynamics in a colloidal living active matter system where motile E. Coli bacteria are present. The results suggested that the level of heterogeneity present in the background changes the long-term spatial dynamics in a colloidal ensemble coupled to a bacterial bath. This work provided insights about statistical behavior and far-from-equilibrium interactions in an active matter system.

Thesis title: Manipulation and control of collective behavior in active matter systems

Thesis advisor: Giovanni Volpe

Thesis abstract: Active matter systems consist of active constituents that transform energy into directed motion in a non-equilibrium setting. The interaction of active agents with each other and with their environment results in collective motion and emergence of long-range ordering. Examples to such dynamic behaviors in living active matter systems are pattern formation in bacterial colonies, ocking of birds and clustering of pedestrian crowds. All these phenomena stem from far-from-equilibrium interactions. The governing dynamics of these phenomena are not yet fully understood and extensively studied. In this thesis, we studied the role that spatial disorder can play to alter collective dynamics in a colloidal living active matter system. We showed that the level of heterogeneity in the environment in uences the long-range order in a colloidal ensemble coupled to a bacterial bath where the non-equilibrium forces imposed by the bacteria become pivotal to control switching between gathering and dispersal of colloids. Apart from studying environmental factors in a complex active matter system, we also focused on a new class of active particles, \bionic microswimmers”, and their clustering behavior. We demonstrated that spherical bionic microswimmers which are fabricated by attaching motile E. coli bacteria on melamine particles can agglomerate in large colloidal structures. Finally, we observed the emergence of swimming clusters as a result of the collective motion of bionic microswimmers. Our results provide insights about statistical behavior and far-from-equilibrium interactions in an active matter system.