Mirja Granfors, Jesús Pineda, Blanca Zufiria Gerbolés, Joana Pereira, Carlo Manzo, and Giovanni Volpe
Date: 7 August 2025
Time: 2:45 PM – 3:00 PM
Place: Conv. Ctr. Room 4
Graphs are used to model complex relationships, such as interactions between particles or connections between brain regions. The structural complexity and variability of graphs pose challenges to their efficient analysis and classification. Here, we propose GAUDI (Graph Autoencoder Uncovering Descriptive Information), a graph autoencoder that addresses these challenges. GAUDI is trained in an unsupervised manner to capture the most critical parameters of graphs in the latent space, thereby enabling the extraction of essential parameters characterizing the graphs. We demonstrate the performance of GAUDI across diverse graph data originating from complex systems, including the estimation of the parameters of Watts-Strogatz graphs, the classification of protein assembly structures from single-molecule localization microscopy data, the analysis of collective behaviors, and correlations between brain connections and age. This approach offers a robust framework for efficiently analyzing and interpreting complex graph data, facilitating the extraction of meaningful patterns and insights across a wide range of applications.