Antonio Ciarlo, Giuseppe Pesce, Bernhard Mehlig, Antonio Sasso, and Giovanni Volpe
Date: 4 August 2025
Time: 11:45 AM – 12:00 PM
Place: Conv. Ctr. Room 3
Many natural phenomena involve dense particles suspended in a moving fluid, such as water droplets in clouds or dust grains in circumstellar disks. Studying these systems at the single particle level is challenging and requires precise control of flow and particle motion. Optical tweezers provide a powerful method for studying inertial effects in such environments. Here, we trap micrometer-sized particles in air and induce controlled dynamics by moving the trapping laser. We show that inertia becomes significant when the trap motion frequency is less than the harmonic trapping frequency, while at much higher motion frequencies, inertia has no effect. These results demonstrate the potential of trapping particles in air for studying inertial phenomena in fluids.