Optical forces and torques in the geometrical optics approximation calculated with neural networks
David Bronte Ciriza, Alessandro Magazzù, Agnese Callegari, Gunther Barbosa, Antonio A. R. Neves, Maria Antonia Iatì, Giovanni Volpe, and Onofrio M. Maragò
SPIE-ETAI, San Diego, CA, USA, 18 – 22 August 2024
Date: 19 August 2024
Time: 1:55 PM – 2:10 PM
Place: Conv. Ctr. Room 6D
Optical tweezers manipulate microscopic objects with light by exchanging momentum and angular momentum between particle and light, generating optical forces and torques. Understanding and predicting them is essential for designing and interpreting experiments. Here, we focus on geometrical optics and optical forces and torques in this regime, and we employ neural networks to calculate them. Using an optically trapped spherical particle as a benchmark, we show that neural networks are faster and more accurate than the calculation with geometrical optics. We demonstrate the effectiveness of our approach in studying the dynamics of systems that are computationally “hard” for traditional computation.
Reference
David Bronte Ciriza, Alessandro Magazzù, Agnese Callegari, Gunther Barbosa, Antonio A. R. Neves, Maria A. Iatì, Giovanni Volpe, Onofrio M. Maragò, Faster and more accurate geometrical-optics optical force calculation using neural networks, ACS Photonics 10, 234–241 (2023)