Poster by A. Callegari at SPIE-OTOM, San Diego, 19 August 2024

Simplified sketch of the neural network used for the simulations of intracavity optical trapping. (Image by A. Callegari.)
Neural networks for intracavity optical trapping
Agnese Callegari, Mathias Samuelsson, Antonio Ciarlo, Giuseppe Pesce, David Bronte Ciriza, Alessandro Magazzù, Onofrio M. Maragò, Antonio Sasso, and Giovanni Volpe
SPIE-OTOM, San Diego, CA, USA, 18 – 22 August 2024
Date: 19 August 2024
Time: 5:30 PM – 7:00 PM
Place: Conv. Ctr. Exhibit Hall A

Intracavity optical tweezers have been proven successful for trapping microscopic particles at very low average power intensity – much lower than the one in standard optical tweezers. This feature makes them particularly promising for the study of biological samples. The modelling of such systems, though, requires time-consuming numerical simulations that affect its usability and predictive power. With the help of machine learning, we can overcome the numerical bottleneck – the calculation of optical forces, torques, and losses – and reproduce, in simulation, the results in the literature and generalize to the case of counterpropagating-beams intracavity optical trapping.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.