Phototactic Robot Tunable by Sensorial Delays published in Phys. Rev. E

Phototactic Robot Tunable by Sensorial Delays

Tuning phototactic robots with sensorial delays (Editors’ suggestion)
Maximilian Leyman, Freddie Ogemark, Jan Wehr & Giovanni Volpe
Physical Review E 98(26), 052606 (2018)
DOI: 10.1103/PhysRevE.98.052606
arXiv: 1807.11765

The presence of a delay between sensing and reacting to a signal can determine the long-term behavior of autonomous agents whose motion is intrinsically noisy.
In a previous work [M. Mijalkov, A. McDaniel, J. Wehr, and G. Volpe, Phys. Rev. X 6, 011008 (2016)], we have shown that sensorial delay can alter the drift and the position probability distribution of an autonomous agent whose speed depends on the illumination intensity it measures. Here, using theory, simulations, and experiments with a phototactic robot, we generalize this effect to an agent for which both speed and rotational diffusion depend on the illumination intensity and are subject to two independent sensorial delays. We show that both the drift and the probability distribution are influenced by the presence of these sensorial delays. In particular, the radial drift may have positive as well as negative sign, and the position probability distribution peaks in different regions depending on the delay.
Furthermore, the presence of multiple sensorial delays permits us to explore the role of the interaction between them.

Freddie Ogemark & Maximlian Leyman defended their Master Thesis. Congrats!

Freddie Ogemark & Maximlian Leyman defended their Master thesis in Complex Adaptive Systems at Chalmers University of Technology on 14 June 2018

Title: Cooperative Robotics with Sensorial Delay

The purpose of this work is to study how the behaviour of robots changes when the data from their sensors is affected by a certain delay. Robots of the model Elisa-3 were therefore studied while performing Brownian motion and with certain features varying as a function of the intensity measured by its sensors. Introducing a delay and varying its sign is shown to have a significant effect on a robot’s behavior. A single robot moving in an intensity field is either drawn to or avoiding higher inten- sities for a positive or a negative delay respectively. In this case experimental data show good agreement with simulated behavior. Simulations also show that multi- ple robots should form clusters when interacting under the influence of a positive delay; however, only weak tendencies towards cluster formation can be seen in the experiments.

​Name of the master programme: MPCAS – Complex Adaptive Systems
Supervisor: Giovanni Volpe, Department of Physics, University of Gothenburg
Examiner: Giovanni Volpe, Department of Physics, University of Gothenburg
Opponents: Andres Hansson & Richard Sundqvist, MP Complex Adaptive Systems, Department of Physics, Chalmers University of Technology

Place: ES51, EDIT building
Time: 14 June, 2018, 17:00