Invited talk by J. Pineda at the CMCB Lab on 27 January 2025

MIRO employs a recurrent graph neural network to refine SMLM point clouds by compressing clusters around their center, enhancing inter-cluster distinction and background separation for efficient clustering. (Image by J. Pineda.)
Spatial clustering of molecular localizations with graph neural networks
Jesús Pineda
Date: 27 January 2025
Time: 10:00
Place: SciLifeLab Campus Solna, Sweden

Single-molecule localization microscopy (SMLM) generates point clouds corresponding to fluorophore localizations. Spatial cluster identification and analysis of these point clouds are crucial for extracting insights about molecular organization. However, this task becomes challenging in the presence of localization noise, high point density, or complex biological structures. Here, we introduce MIRO (Multimodal Integration through Relational Optimization), an algorithm that uses recurrent graph neural networks to transform the point clouds in order to improve clustering efficiency when applying conventional clustering techniques. We show that MIRO supports simultaneous processing of clusters of different shapes and at multiple scales, demonstrating improved performance across varied datasets. Our comprehensive evaluation demonstrates MIRO’s transformative potential for single-molecule localization applications, showcasing its capability to revolutionize cluster analysis and provide accurate, reliable details of molecular architecture. In addition, MIRO’s robust clustering capabilities hold promise for applications in various fields such as neuroscience, for the analysis of neural connectivity patterns, and environmental science, for studying spatial distributions of ecological data.

Reference
Pineda, Jesús, Sergi Masó-Orriols, Joan Bertran, Mattias Goksör, Giovanni Volpe, and Carlo Manzo. Spatial Clustering of Molecular Localizations with Graph Neural Networks.  arXiv: 2412.00173

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.