Presentation by H. Klein Moberg at SPIE-ETAI, San Diego, 23 August 2023

A convolutional neural network characterizes the properties of very small biomolecules without requiring prior detection. (Image by H. Klein Moberg.)
Deep learning for nanofluidic scattering microscopy
Henrik Klein Moberg
Date: 23 August 2023
Time: 8:15 AM PDT

We show that a custom ResNet-inspired CNN architecture trained on simulated biomolecule trajectories surpasses the performance of standard algorithms in terms of tracking and determining the molecular weight and hydrodynamic radius of biomolecules in the low-kDa regime in optical microscopy. We show that high accuracy and precision is retained even below the 10-kDa regime, constituting approximately an order of magnitude improvement in limit of detection compared to current state-of-the-art, enabling analysis of hitherto elusive species of biomolecules such as cytokines (~5-25 kDa) important for cancer research and the protein hormone insulin (~5.6 kDa), potentially opening up entirely new avenues of biological research.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.