Work Done by Rotational Force Fields published in J. Opt.

Influence of rotational force fields on the determination of the work done on a driven Brownian particle

Influence of rotational force fields on the determination of the work done on a driven Brownian particle
Giuseppe Pesce, Giovanni Volpe, Alberto Imparato, Giulia Rusciano & Antonio Sasso
Journal of Optics 13(4), 044006 (2011)
DOI: 10.1088/2040-8978/13/4/044006
arXiv: 1006.4534

For a Brownian system the evolution of thermodynamic quantities is a stochastic process, in particular the work performed on a driven colloidal particle held in an optical trap, changes for each realization of the experimental manipulation, even though the manipulation protocol remains unchanged. Nevertheless, the work distribution is governed by established laws. Here, we show how the measurement of the work distribution is influenced by the presence of rotational, i.e. nonconservative, radiation forces. Experiments on particles of different materials show that the rotational radiation forces, and therefore their effect on the work distributions, increase with the particle’s refractive index.

Non-conservative Forces in Optical Traps published in EPL

Quantitative assessment of non-conservative radiation forces in an optical trap

Quantitative assessment of non-conservative radiation forces in an optical trap
Giuseppe Pesce, Giorgio Volpe, Anna Chiara De Luca, Giulia Rusciano & Giovanni Volpe
EPL (Europhysics Letters) 86(3), 38002 (2009)
DOI: 10.1209/0295-5075/86/38002
arXiv: 0902.4178

The forces acting on an optically trapped particle are usually assumed to be conservative. However, the presence of a non-conservative component has recently been demonstrated. Here, we propose a technique that permits one to quantify the contribution of such a non-conservative component. This is an extension of a standard calibration technique for optical tweezers and, therefore, can easily become a standard test to verify the conservative optical force assumption. Using this technique, we have analyzed optically trapped particles of different size under different trapping conditions. We conclude that the non-conservative effects are effectively negligible and do not affect the standard calibration procedure, unless for extremely low-power trapping, far away from the trapping regimes usually used in experiments.

Actin-cytoskeleton Depolymerisation Detection in a Single Cell published in Opt. Express

Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers

Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers
Anna Chiara de Luca, Giovanni Volpe, Anna Morales Drets, Maria Isabel Geli, Giuseppe Pesce, Giulia Rusciano, Antonio Sasso & Dmitri Petrov
Optics Express 15(13), 7922—7932 (2007)
DOI: 10.1364/OE.15.007922

The cytoskeleton provides the backbone structure for the cellular organization, determining, in particular, the cellular mechanical properties. These are important factors in many biological processes, as, for instance, the metastatic process of malignant cells. In this paper, we demonstrate the possibility of monitoring the cytoskeleton structural transformations in optically trapped yeast cells (Saccharomyces cerevisiae) by tracking the forward scattered light via a quadrant photodiode. We distinguished normal cells from cells treated with latrunculin A, a drug which is known to induce the actin-cytoskeleton depolymerization. Since the proposed technique relies only on the inherent properties of the optical trap, without requiring external markers or biochemical sensitive spectroscopic techniques, it can be readily combined with existing optical tweezers setups.