Press release on Active Droploids

The article Active Droploids has been featured in a press release of the University of Gothenburg.

The study, published in Nature Communications, examines a special system of colloidal particles and demonstrates a new kind of active matter, which interacts with and modifies its environment. In the long run, the result of the study can be used for drug delivery inside the human body or to perform sensing of environmental pollutants and their clean-up.

Here the links to the press releases:
English: Feedback creates a new class of active biomimetic materials.
Swedish: Feedback möjliggör en ny form av aktiva biomimetiska material.

The article has been features also in Mirage News, Science Daily,, Innovations Report, Informationsdienst Wissenschaft (idw) online, Nanowerk.

Active droploids published in Nature Communications

Active droploids. (Image taken from the article.)
Active droploids
Jens Grauer, Falko Schmidt, Jesús Pineda, Benjamin Midtvedt, Hartmut Löwen, Giovanni Volpe & Benno Liebchen
Nat. Commun. 12, 6005 (2021)
doi: 10.1038/s41467-021-26319-3
arXiv: 2109.10677

Active matter comprises self-driven units, such as bacteria and synthetic microswimmers, that can spontaneously form complex patterns and assemble into functional microdevices. These processes are possible thanks to the out-of-equilibrium nature of active-matter systems, fueled by a one-way free-energy flow from the environment into the system. Here, we take the next step in the evolution of active matter by realizing a two-way coupling between active particles and their environment, where active particles act back on the environment giving rise to the formation of superstructures. In experiments and simulations we observe that, under light-illumination, colloidal particles and their near-critical environment create mutually-coupled co-evolving structures. These structures unify in the form of active superstructures featuring a droplet shape and a colloidal engine inducing self-propulsion. We call them active droploids—a portmanteau of droplet and colloids. Our results provide a pathway to create active superstructures through environmental feedback.

Active Colloidal Molecules published in J. Chem. Phys.

Light-controlled Assembly of Active Colloidal Molecules
Light-controlled Assembly of Active Colloidal Molecules

Light-controlled Assembly of Active Colloidal Molecules
Falko Schmidt, Benno Liebchen, Hartmut Löwen & Giovanni Volpe
Journal of Chemical Physics 150(9), 094905 (2019)
doi: 10.1063/1.5079861
arXiv: 1801.06868

Thanks to a constant energy input, active matter can self-assemble into phases with complex architectures and functionalities such as living clusters that dynamically form, reshape, and break-up, which are forbidden in equilibrium materials by the entropy maximization (or free energy minimization) principle. The challenge to control this active self-assembly has evoked widespread efforts typically hinging on engineering of the properties of individual motile constituents. Here, we provide a different route, where activity occurs as an emergent phenomenon only when individual building blocks bind together in a way that we control by laser light. Using experiments and simulations of two species of immotile microspheres, we exemplify this route by creating active molecules featuring a complex array of behaviors, becoming migrators, spinners, and rotators. The possibility to control the dynamics of active self-assembly via light-controllable nonreciprocal interactions will inspire new approaches to understand living matter and to design active materials.

Colloquium on active matter by Hartmut Löwen, PJ Lecture Hall, 13 sep 2018

Physics of active soft matter
General Physics Colloquium by Hartmut Löwen, Heinrich-Heine Universität Düsseldorf​, Germany

​Abstract: Ordinary materials are “passive” in the sense that their constituents are typically made by inert particles which are subjected to thermal fluctuations, internal interactions and external fields but do not move on their own. Living systems, like schools of fish, swarms of birds, pedestrians and swimming microbes are called “active matter” since they are composed of self-propelled constituents. Active matter is intrinsically in nonequilibrium and exhibits a plethora of novel phenomena as revealed by a recent combined effort
of statistical theory, computer simulation and real-space experiments. The colloquium talk provides an introduction into the physics of active matter focussing on biological and artificial microswimmers as key examples of active soft matter [1]. A number of single-particle and collective phenomena in active matter will be adressed ranging from the circle swimming to inertial delay effects.​​

​[1] For a review, see: C. Bechinger, R. di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments, Reviews of Modern Physics 88, 045006 (2016).

Place: PJ Lecture Hall

Review on Active Matter published in Rev. Mod. Phys.

Active Brownian particles in complex and crowded environments

Active Brownian particles in complex and crowded environments (Invited review)
Clemens Bechinger, Roberto Di Leonardo, Hartmut Löwen, Charles Reichhardt, Giorgio Volpe & Giovanni Volpe
Reviews of Modern Physics 88(4), 045006 (2016)
DOI: 10.1103/RevModPhys.88.045006
arXiv: 1602.00081

Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.

Reply to Comment on Circular Microswimmers published in Phys. Rev. Lett.

Reply to comment on “Circular motion of asymmetric self-propelling particles”

Reply to comment on “Circular motion of asymmetric self-propelling particles”
Felix Kümmel, Borge ten Hagen, Raphael Wittkowski, Daisuke Takagi, Ivo Buttinoni, Ralf Eichhorn, Giovanni Volpe, Hartmut Löwen & Clemens Bechinger
Physical Review Letters 113(2), 029802 (2014)
DOI: 10.1103/PhysRevLett.113.029802
arXiv: 1407.4016

See also “Circular motion of asymmetric self-propelling particles”, Physical Review Letters 113(2), 029802 (2014)

Circular Microswimmers published in Phys. Rev. Lett.

Circular motion of asymmetric self-propelling particles

Circular motion of asymmetric self-propelling particles
Felix Kümmel, Borge ten Hagen, Raphael Wittkowski, Ivo Buttinoni, Giovanni Volpe, Hartmut Löwen & Clemens Bechinger
Physical Review Letters 110(19), 198302 (2013)
DOI: 10.1103/PhysRevLett.110.198302
arXiv: 1302.5787

See also Reply to comment on “Circular motion of asymmetric self-propelling particles”, Physical Review Letters 113(2), 029802 (2014)

Micron-sized self-propelled (active) particles can be considered as model systems for characterizing more complex biological organisms like swimming bacteria or motile cells. We produce asymmetric microswimmers by soft lithography and study their circular motion on a substrate and near channel boundaries. Our experimental observations are in full agreement with a theory of Brownian dynamics for asymmetric self-propelled particles, which couples their translational and orientational motion.

Featured in “Synopsis: Round and Round in Circles”, Physics (May 9, 2013)