Talk by F. Schmidt at APS March Meeting 2019, Boston, 6 Mar 2019

Light-driven Assembly of Motile Colloidal Clusters from Immotile Building Blocks
Falko Schmidt, Benno Liebchen, Hartmut Löwen & Giovanni Volpe
APS March Meeting 2019, Boston, USA
6 March 2019 at 8:36-8:48 a.m., Room 258B

Active matter, consisting of self-propelled units locally injecting energy into the system, opens new horizons for the creation of functional soft materials with designable properties. Experiencing a constant energy input, allows active matter to self-assemble into phases with a complex architecture and functionality such as living clusters which dynamically form, reshape and break-up but would be forbidden in equilibrium material by the entropy maximization (or free energy minimization) principle. The challenge to control this active self-assembly has evoked widespread efforts typically hinging on an engineering of the properties of individual motile constituents. Here, we provide a different route, where activity occurs as an emergent phenomenon only when individual building blocks bind together, in a way which we control by laser light. Using experiments and simulations of two species of immotile microspheres, we exemplify this route by creating active molecules featuring a complex array of behaviors, becoming migrators, spinners and rotators. The possibility to control the dynamics of active self-assembly via light-controllable nonreciprocal interactions will inspire new approaches to understand living matter and to design active materials.

Reference: Schmidt et al. Light-controlled Assembly of Active Colloidal Molecules arXiv:1801.06868 (2018)

Talk by F. Schmidt at IONS Scandinavia 2018, Copenhagen, 5-9 Jun 2018

Light-controlled Assembly of Active Colloidal Molecules
Falko Schmidt, Benno Liebchen, Hartmut Löwen & Giovanni Volpe
IONS Scandinavia 2018, Copenhagen, Denmark
5-9 June 2018

We experimentally demonstrate the light-controlled assembly of active colloidal molecules from a suspension of two species of passive microspheres. When light is shone on the sample, the ac- tive molecules form and acquire motility through non-reciprocal interactions between their passive components. As their size grows, they feature a complex array of behaviors, becoming propellers, spinners and rotators. Their shape and functionality can be tuned by applying periodic illumination. We also provide a theoretical model allowing to predict the complete table of emerging active molecules and their properties in quantitative agreement with the experiments.

Reference: Schmidt et al. Light-controlled Assembly of Active Colloidal Molecules arXiv:1801.06868 (2018)

Talk by F. Schmidt at the APS March Meeting, Los Angeles, 8 Mar 2018

Microscopic Engine Powered by Critical Demixing
Falko Schmidt, Alessandro Magazzu, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe
APS March Meeting 2018, Los Angeles (CA), USA
5-9 March 2018

During the last few decades much effort has gone into the miniaturization of machines down to the microscopic scale with robotic solutions indispensable in modern industrial processes and play a central role in many biological systems. There has been a quest in understanding the mechanism behind molecular motors and several approaches have been proposed to realize artificial engines capable of converting energy into mechanical work. These current micronsized engines depend on the transfer of angular momentum of light, are driven by external magnetic fields, due to chemical reactions or by the energy flow between two thermal reservoirs [1-5]. Here we propose a new type of engine that is powered by the local, reversible demixing of a critical binary liquid. In particular, we show that an absorbing, optically trapped particle performs revolutions around the optical beam because of the emergence of diffusiophoresis and thereby produces work. This engines is adjustable by the optical power supplied, the temperature of the environment and the criticality of the system.

References:
1. P.A. Quinto-Su, Nat. Comm. (2014).
2. V. Blickle et al., Nat. Phys. (2012).
3. I.A. Martinez et al., Nat. Phys. 12 (2016).
4. S.L. Neale et al., Nat. Mater. (2005).
5. A. Argun et al., arXiv preprint (2017)

Session R57: Active Matter I
8:00 AM–11:00 AM, Thursday, March 8, 2018
LACC Room: 518
Sponsoring Units: GSOFT DBIO GSNP
Chair: Paulo Arratia, Univ of Pennsylvania

Microscopic Critical Engine featured in Phys.Org

Microscopic engine powered by critical demixing

Our recent article Microscopic engine powered by critical remixing
by Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe, published in Physical Review Letters 120(6), 068004 (2018) has been featured in “Tiny engine powered by demixing fluid” Phys.Org (February 12, 2018)

Microscopic Critical Engine featured in Optics & Photonics News

Microscopic engine powered by critical demixing

Our recent article Microscopic engine powered by critical remixing
by Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe, published in Physical Review Letters 120(6), 068004 (2018) has been featured in “Laser + Critical Liquid = Micro-Engine”, Optics & Photonics News (February 12, 2018)

Optics & Photonics News (OPN) is The Optical Society’s monthly news magazine. It provides in-depth coverage of recent developments in the field of optics and offers busy professionals the tools they need to succeed in the optics industry, as well as informative pieces on a variety of topics such as science and society, education, technology and business. OPN strives to make the various facets of this diverse field accessible to researchers, engineers, businesspeople and students. Contributors include scientists and journalists who specialize in the field of optics.

Microscopic Critical Engine featured in APS Physics

Microscopic engine powered by critical demixing

Our recent article Microscopic engine powered by critical remixing
by Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe, published in Physical Review Letters 120(6), 068004 (2018) has been featured in “Focus: A Tiny Engine Powered by Light and Liquid Physics”, Physics 11, 16 (February 9, 2018)

Physics provides daily online-only news and commentary about a selection of papers from the APS journals collection. It is aimed at the reader who wants to keep up with highlights of physics research with explanations that don’t rely on complex technical detail.

The category Physics: focus stories features only a few number of articles each week selected among the set of articles published on all the APS journals.
Research articles that have an interdisciplinary character are usually selected, and their explanations are geared toward students and non-experts. Features are written by a journalist for an audience with a general interest in physics.

Microscopic Critical Engine published in Phys. Rev. Lett.

Microscopic engine powered by critical demixing

Microscopic engine powered by critical demixing
Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe
Physical Review Letters 120(6), 068004 (2018)
DOI: 10.1103/PhysRevLett.120.068004
arXiv: 1705.03317

We experimentally demonstrate a microscopic engine powered by the local reversible demixing of a critical mixture. We show that, when an absorbing microsphere is optically trapped by a focused laser beam in a sub-critical mixture, it is set into rotation around the optical axis of the beam because of the emergence of diffusiophoretic propulsion. This behavior can be controlled by adjusting the optical power, the temperature, and the criticality of the mixture.

Featured in :
Focus: A Tiny Engine Powered by Light and Liquid Physics”, Physics 11, 16 (February 9, 2018)
Laser + Critical Liquid = Micro-Engine”, Optics & Photonics News (February 12, 2018)
Tiny engine powered by demixing fluid” Phys.Org (February 12, 2018)
Расслаивание растворителя закрутило микрочастицы вокруг лазерного пучка”, N+1: научные статьи, новости, открытия (February 12, 2018)
Tiny engine powered by remixing fluid”, Brinkwire (February 16, 2018)

 

Falko Schmidt starts his PhD

Falko Schmidt starts his PhD at the Physics Department of the University of Gothenburg on 1 January 2017.

He has a Master degree from the Physics Department of Leipzig University with a Master thesis on the realisation of a microscopic critical engine.

He will now work on his PhD thesis on the experimental study of critical fluctuations and critical Casimir forces.