Quantitative Digital Microscopy with Deep Learning on ArXiv

Particle tracking and characterization in terms of radius and refractive index.

Quantitative Digital Microscopy with Deep Learning
Benjamin Midtvedt, Saga Helgadottir, Aykut Argun, Jesús Pineda, Daniel Midtvedt, Giovanni Volpe
arXiv: 2010.08260

Video microscopy has a long history of providing insights and breakthroughs for a broad range of disciplines, from physics to biology. Image analysis to extract quantitative information from video microscopy data has traditionally relied on algorithmic approaches, which are often difficult to implement, time consuming, and computationally expensive. Recently, alternative data-driven approaches using deep learning have greatly improved quantitative digital microscopy, potentially offering automatized, accurate, and fast image analysis. However, the combination of deep learning and video microscopy remains underutilized primarily due to the steep learning curve involved in developing custom deep-learning solutions. To overcome this issue, we introduce a software, DeepTrack 2.0, to design, train and validate deep-learning solutions for digital microscopy. We use it to exemplify how deep learning can be employed for a broad range of applications, from particle localization, tracking and characterization to cell counting and classification. Thanks to its user-friendly graphical interface, DeepTrack 2.0 can be easily customized for user-specific applications, and, thanks to its open-source object-oriented programming, it can be easily expanded to add features and functionalities, potentially introducing deep-learning-enhanced video microscopy to a far wider audience.

Soft Matter Lab presentations at the SPIE Optics+Photonics Digital Forum

Seven members of the Soft Matter Lab (Saga HelgadottirBenjamin Midtvedt, Aykut Argun, Laura Pérez-GarciaDaniel MidtvedtHarshith BachimanchiEmiliano Gómez) were selected for oral and poster presentations at the SPIE Optics+Photonics Digital Forum, August 24-28, 2020.

The SPIE digital forum is a free, online only event.
The registration for the Digital Forum includes access to all presentations and proceedings.

The Soft Matter Lab contributions are part of the SPIE Nanoscience + Engineering conferences, namely the conference on Emerging Topics in Artificial Intelligence 2020 and the conference on Optical Trapping and Optical Micromanipulation XVII.

The contributions being presented are listed below, including also the presentations co-authored by Giovanni Volpe.

Note: the presentation times are indicated according to PDT (Pacific Daylight Time) (GMT-7)

Emerging Topics in Artificial Intelligence 2020

Saga Helgadottir
Digital video microscopy with deep learning (Invited Paper)
26 August 2020, 10:30 AM
SPIE Link: here.

Aykut Argun
Calibration of force fields using recurrent neural networks
26 August 2020, 8:30 AM
SPIE Link: here.

Laura Pérez-García
Deep-learning enhanced light-sheet microscopy
25 August 2020, 9:10 AM
SPIE Link: here.

Daniel Midtvedt
Holographic characterization of subwavelength particles enhanced by deep learning
24 August 2020, 2:40 PM
SPIE Link: here.

Benjamin Midtvedt
DeepTrack: A comprehensive deep learning framework for digital microscopy
26 August 2020, 11:40 AM
SPIE Link: here.

Gorka Muñoz-Gil
The anomalous diffusion challenge: Single trajectory characterisation as a competition
26 August 2020, 12:00 PM
SPIE Link: here.

Meera Srikrishna
Brain tissue segmentation using U-Nets in cranial CT scans
25 August 2020, 2:00 PM
SPIE Link: here.

Juan S. Sierra
Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks
26 August 2020, 11:50 AM
SPIE Link: here.

Harshith Bachimanchi
Digital holographic microscopy driven by deep learning: A study on marine planktons (Poster)
24 August 2020, 5:30 PM
SPIE Link: here.

Emiliano Gómez
BRAPH 2.0: Software for the analysis of brain connectivity with graph theory (Poster)
24 August 2020, 5:30 PM
SPIE Link: here.

Optical Trapping and Optical Micromanipulation XVII

Laura Pérez-García
Reconstructing complex force fields with optical tweezers
24 August 2020, 5:00 PM
SPIE Link: here.

Alejandro V. Arzola
Direct visualization of the spin-orbit angular momentum conversion in optical trapping
25 August 2020, 10:40 AM
SPIE Link: here.

Isaac Lenton
Illuminating the complex behaviour of particles in optical traps with machine learning
26 August 2020, 9:10 AM
SPIE Link: here.

Fatemeh Kalantarifard
Optical trapping of microparticles and yeast cells at ultra-low intensity by intracavity nonlinear feedback forces
24 August 2020, 11:10 AM
SPIE Link: here.

Note: the presentation times are indicated according to PDT (Pacific Daylight Time) (GMT-7)

Holographic characterisation of subwavelength particles enhanced by deep learning on ArXiv

Phase and amplitude signals from representative particles for testing the performance of the Deep-learning approach

Holographic characterisation of subwavelength particles enhanced by deep learning
Benjamin Midtvedt, Erik Olsén, Fredrik Eklund, Fredrik Höök, Caroline Beck Adiels, Giovanni Volpe, Daniel Midtvedt
arXiv: 2006.11154

The characterisation of the physical properties of nanoparticles in their native environment plays a central role in a wide range of fields, from nanoparticle-enhanced drug delivery to environmental nanopollution assessment. Standard optical approaches require long trajectories of nanoparticles dispersed in a medium with known viscosity to characterise their diffusion constant and, thus, their size. However, often only short trajectories are available, while the medium viscosity is unknown, e.g., in most biomedical applications. In this work, we demonstrate a label-free method to quantify size and refractive index of individual subwavelength particles using two orders of magnitude shorter trajectories than required by standard methods, and without assumptions about the physicochemical properties of the medium. We achieve this by developing a weighted average convolutional neural network to analyse the holographic images of the particles. As a proof of principle, we distinguish and quantify size and refractive index of silica and polystyrene particles without prior knowledge of solute viscosity or refractive index. As an example of an application beyond the state of the art, we demonstrate how this technique can monitor the aggregation of polystyrene nanoparticles, revealing the time-resolved dynamics of the monomer number and fractal dimension of individual subwavelength aggregates. This technique opens new possibilities for nanoparticle characterisation with a broad range of applications from biomedicine to environmental monitoring.

Holographic characterisation of subwavelength particles enhanced by deep learning

Holographic characterisation of subwavelength particles enhanced by deep learning
Benjamin Midtvedt, Erik Olsen, Fredrick Eklund, Jan Swenson, Fredrik Höök, Caroline Beck Adiels, Giovanni Volpe and Daniel Midtvedt

Click here to see the slides.
Twitter Link: here.

The characterisation of the physical properties of nanoparticles in their native environment plays a central role in a wide range of fields, from nanoparticle-enhanced drug delivery to environmental nanopollution assessment. Standard optical approaches require long trajectories of nanoparticles dispersed in a medium with known viscosity to characterise their diffusion constant and, thus, their size. However, often only short trajectories are available, while the medium viscosity is unknown, e.g., in most biomedical applications.
In this work, we demonstrate a label-free method to quantify size and refractive index of individual subwavelength particles using two orders of magnitude shorter trajectories than required by standard methods, and without assumptions about the physicochemical properties of the medium. We achieve this by developing a weighted average convolutional neural network to analyse the holographic images of the particles. As a proof of principle, we distinguish and quantify size and refractive index of silica and polystyrene particles without prior knowledge of solute viscosity or refractive index. As an example of an application beyond the state of the art, we demonstrate how this technique can monitor the aggregation of polystyrene nanoparticles, revealing the time-resolved dynamics of the monomer number and fractal dimension of individual subwavelength aggregates.
This technique opens new possibilities for nanoparticle characterisation with a broad range of applications from biomedicine to environmental monitoring.

Poster Session
Time: June 22nd 2020
Place: Twitter

POM Conference
Link: 
POM
Time: June 25th 2020
Place: Online

Poster Slides

Daniel Midtvedt – POM Poster – Page 1
Daniel Midtvedt – POM Poster – Page 2
Daniel Midtvedt – POM Poster – Page 3
Daniel Midtvedt – POM Poster – Page 4

Soft Matter Lab presentations at the Photonics Online Meet-up, 22 June 2020

Six members of the Soft Matter Lab (Aykut Argun, Falko Schmidt, Laura Pérez-Garcia, Saga Helgadottir, Alessandro Magazzù, Daniel Midtvedt) were selected for poster presentations at the Photonics Online Meet-up (POM).

POM is an entirely free virtual conference. It aims to bring together a community of early career and established researchers from universities, industry, and government working in optics and photonics.

The meeting, at its second edition, will be held on June 25th 2020, 9-14.30 Central European Time. The virtual poster session will take place on June 22nd, on Twitter and virtual reality.

The poster contributions being presented are:

Aykut Argun
Enhanced force-field calibration via machine learning
Twitter Link: here.

Falko Schmidt
Dynamics of an active nanoparticle in an optical trap
Twitter Link: here.

Laura Pérez-García
Optical force field reconstruction using Brownian trajectories
Twitter Link: here.

Saga Helgadottir
DeepTrack: A comprehensive deep learning framework for digital microscopy
Twitter Link: here.

Alessandro Magazzù
Controlling the dynamics of colloidal particles by critical Casimir forces
Twitter Link: here.

Daniel Midtvedt
Holographic characterisation of subwavelength particles enhanced by deep learning
Twitter Link: here.

Link: Photonics Online Meet-up (POM)