Controlling the dynamics of colloidal particles by critical Casimir forces

Controlling the dynamics of colloidal particles by critical Casimir forces
Alessandro Magazzù, Agnese Callegari, Juan Pablo Staforelli, Andrea Gambassi, Siegfried Dietrich and Giovanni Volpe

Click here to see the slides.
Twitter Link: here.

Critical Casimir forces can play an important role for applications in nano-science and nano-technology, owing to their piconewton strength, nanometric action range, fine tunability as a function of temperature, and exquisite dependence on the surface properties of the involved objects. Here, we investigate the effects of critical Casimir forces on the free dynamics of a pair of colloidal particles dispersed in the bulk of a near-critical binary liquid solvent, using blinking optical tweezers. In particular, we measure the time evolution of the distance between the two colloids to determine their relative diffusion and drift velocity. Furthermore, we show how critical Casimir forces change the dynamic properties of this two-colloid system by studying the temperature dependence of the distribution of the so-called first-passage time, i.e., of the time necessary for the particles to reach for the first time a certain separation, starting from an initially assigned one. These data are in good agreement with theoretical results obtained from Monte Carlo simulations and Langevin dynamics.

Poster Session
Time: June 22nd 2020
Place: Twitter

POM Conference
Link: 
POM
Time: June 25th 2020
Place: Online

Poster Slides

Alessandro Magazzù – POM Poster – Page 1
Alessandro Magazzù – POM Poster – Page 2
Alessandro Magazzù – POM Poster – Page 3
Alessandro Magazzù – POM Poster – Page 4

Soft Matter Lab presentations at the Photonics Online Meet-up, 22 June 2020

Six members of the Soft Matter Lab (Aykut Argun, Falko Schmidt, Laura Pérez-Garcia, Saga Helgadottir, Alessandro Magazzù, Daniel Midtvedt) were selected for poster presentations at the Photonics Online Meet-up (POM).

POM is an entirely free virtual conference. It aims to bring together a community of early career and established researchers from universities, industry, and government working in optics and photonics.

The meeting, at its second edition, will be held on June 25th 2020, 9-14.30 Central European Time. The virtual poster session will take place on June 22nd, on Twitter and virtual reality.

The poster contributions being presented are:

Aykut Argun
Enhanced force-field calibration via machine learning
Twitter Link: here.

Falko Schmidt
Dynamics of an active nanoparticle in an optical trap
Twitter Link: here.

Laura Pérez-García
Optical force field reconstruction using Brownian trajectories
Twitter Link: here.

Saga Helgadottir
DeepTrack: A comprehensive deep learning framework for digital microscopy
Twitter Link: here.

Alessandro Magazzù
Controlling the dynamics of colloidal particles by critical Casimir forces
Twitter Link: here.

Daniel Midtvedt
Holographic characterisation of subwavelength particles enhanced by deep learning
Twitter Link: here.

Link: Photonics Online Meet-up (POM)

Invited talks by G. Volpe and A. Magazzù at “SPACE Tweezers” Kick-off Meeting, Messina, Italy, 18-19 February 2020

Alessandro Magazzù and Giovanni Volpe will give invited presentations at the Kick-off meeting of SPACE Tweezers (Spectroscopy of Planetary and AtmospheriC particulatE by optical Tweezers).

SPACE Tweezers proposes research activities to trap and characterise spectroscopically extraterrestrial particles and their analogs. The opportunity to apply optical tweezers to planetary particulate matter can pave the way for space applications for in situ analyses and/or for sample return of particles in pristine conditions, i.e. preventing contamination and alteration, unlike collection methods so far used in space exploration.

The meeting, organised by Maria Grazia Donato, Pietro Guicciardi, Maria Antonia Iatì, and Onofrio M. Maragò, will take place at CNR-IPCF, Messina, on 18-19 February 2020.

The contributions of Giovanni Volpe and Alessandro Magazzù will be presented  according to the following schedule:

Giovanni Volpe
Optical Tweezers Activities in Gothenburg
Date: 19 February 2020
Time: 10:55 CET

Alessandro Magazzù
Controlling the Dynamics of Colloidal Particles by Critical Casimir Forces using Blinking Optical Tweezers
Date: 19 February 2020
Time: 11:20 CET

 

 

 

Presentation by Alessandro Magazzù at the OSA Biophotonics Congress, Tucson, 16 Apr 2019

Dynamics of optically trapped particles tuned by critical Casimir forces and torques

Alessandro Magazzù, Agnese Callegari, Juan Pablo Staforelli, Andrea Gambassi, Siegfried Dietrich & Giovanni Volpe.
OSA Biophotonics Congress, Tucson (AZ), USA 16 April 2019

Fluctuations have always played a crucial role in physics, especially when spatially confined by objects. Density fluctuations of the composition of a binary critical mixture emerge when its temperature is in proximity of the critical point. If these fluctuations are confined between two objects (e.g., two colloids, or a colloid and a planar surface), they give rise to Critical Casimir forces (CCFs). Although, these forces were predicted theoretically in 1978 in analogy to quantum-electrodynamical (QED) Casimir Forces they have never aroused a lot of attentions. They have always been considered mostly like a curiosity, until recently. Thanks to the development of nano-technology, CCFs seem to have establish their role in nano-science. They have been measured only recently, proving their relevance at nanoscale.

Session: Enhancing Techniques
14:00 –16:00, Tuesday, April 16, 2019
Chair: Frank Cichos; University Leipzig, Germany

 

Controlling Colloidal Dynamics by Critical Casimir Forces published in Soft Matter

Controlling the dynamics of colloidal particles by critical Casimir forces

Controlling the dynamics of colloidal particles by critical Casimir forces
(Back cover article)
Alessandro Magazzù, Agnese Callegari, Juan Pablo Staforelli, Andrea Gambassi, Siegfried Dietrich & Giovanni Volpe
Soft Matter 15(10), 2152—2162 (2019)
doi: 10.1039/C8SM01376D
arXiv: 1806.11403

Critical Casimir forces can play an important role for applications in nano-science and nano-technology, owing to their piconewton strength, nanometric action range, fine tunability as a function of temperature, and exquisite dependence on the surface properties of the involved objects. Here, we investigate the effects of critical Casimir forces on the free dynamics of a pair of colloidal particles dispersed in the bulk of a near-critical binary liquid solvent, using blinking optical tweezers. In particular, we measure the time evolution of the distance between the two colloids to determine their relative diffusion and drift velocity. Furthermore, we show how critical Casimir forces change the dynamic properties of this two-colloid system by studying the temperature dependence of the distribution of the so-called first-passage time, i.e., of the time necessary for the particles to reach for the first time a certain separation, starting from an initially assigned one. These data are in good agreement with theoretical results obtained from Monte Carlo simulations and Langevin dynamics.

Funding:

ERC-founder H2020 European Research Council (ERC) Starting Grant ComplexSwimmers (677511).

Alessandro Magazzù awarded Best Presentation Prize at Soft Matter Days 2018

Alessandro Magazzù has been awarded a best oral contribution “Soft Matter poster price” during the conference Italian Soft Matter Days 2018, held in Padua, Italy on September 13-14, 2018. The prize has been given by Emanuela Zaccarelli, editorial board members of the Soft Matter journal. This prize mainly consists in an invitation to submit a manuscript without the pre-screening by the Editors. It also includes a “poster prize” and a personal yearly subscription to the journal.

Review on Optical Tweezers published in J. Quant. Spectrosc. Rad. Transf.

Optical tweezers and their applications

Optical tweezers and their applications
Paolo Polimeno, Alessandro Magazzù, Maria Antonia Iata, Francesco Patti, Rosalba  Saija, Cristian Degli Esposti Boschi, Maria Grazia Donato, Pietro G. Gucciardi, Philip H. Jones, Giovanni Volpe & Onofrio M. Maragò
Journal of Quantitative Spectroscopy and Radiative Transfer 218(October 2018), 131—150 (2018)
DOI: 10.1016/j.jqsrt.2018.07.013

Optical tweezers, tools based on strongly focused light, enable optical trapping, manipulation, and characterisation of a wide range of microscopic and nanoscopic materials. In the limiting cases of spherical particles either much smaller or much larger than the trapping wavelength, the force in optical tweezers separates into a conservative gradient force, which is proportional to the light intensity gradient and responsible for trapping, and a non-conservative scattering force, which is proportional to the light intensity and is generally detrimental for trapping, but fundamental for optical manipulation and laser cooling. For non-spherical particles or at intermediate (meso)scales, the situation is more complex and this traditional identification of gradient and scattering force is more elusive. Moreover, shape and composition can have dramatic consequences for optically trapped particle dynamics. Here, after an introduction to the theory and practice of optical forces with a focus on the role of shape and composition, we give an overview of some recent applications to biology, nanotechnology, spectroscopy, stochastic thermodynamics, critical Casimir forces, and active matter.

Talk by A. Magazzù at Italian Soft Days 2018, Padua, 13-14 Sept 2018

Microscopic engine powered by critical demixing
Alessandro Magazzù, Falko Schmidt, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe
Italian Soft Days 2018, Padua, Italy
13-14 September 2018

We propose a new type of engine powered by the local, reversible demixing of a critical binary liquid. In particular, we show that a light absorbing, optically trapped particle, performs revolutions around the trapping beam producing work.
This behavior results from an equilibrium between optical forces and diffusiophoresis induced by a local demixing of the critical mixture. This new kind of engine can be controlled by the optical power supplied, the temperature of the environment and the criticality of the system.

Reference: Schmidt et al. Microscopic Engine Powered by Critical Demixing,  Phys. Rev. Lett. 120, 068004 (2018)

Microscopic Critical Engine featured in Phys.Org

Microscopic engine powered by critical demixing

Our recent article Microscopic engine powered by critical remixing
by Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe, published in Physical Review Letters 120(6), 068004 (2018) has been featured in “Tiny engine powered by demixing fluid” Phys.Org (February 12, 2018)

Microscopic Critical Engine featured in Optics & Photonics News

Microscopic engine powered by critical demixing

Our recent article Microscopic engine powered by critical remixing
by Falko Schmidt, Alessandro Magazzù, Agnese Callegari, Luca Biancofiore, Frank Cichos & Giovanni Volpe, published in Physical Review Letters 120(6), 068004 (2018) has been featured in “Laser + Critical Liquid = Micro-Engine”, Optics & Photonics News (February 12, 2018)

Optics & Photonics News (OPN) is The Optical Society’s monthly news magazine. It provides in-depth coverage of recent developments in the field of optics and offers busy professionals the tools they need to succeed in the optics industry, as well as informative pieces on a variety of topics such as science and society, education, technology and business. OPN strives to make the various facets of this diverse field accessible to researchers, engineers, businesspeople and students. Contributors include scientists and journalists who specialize in the field of optics.