News

Influence of Sensorial Delay on Clustering and Swarming published in Phys. Rev. E

Influence of Sensorial Delay on Clustering and Swarming

Influence of Sensorial Delay on Clustering and Swarming
Rafal Piwowarczyk, Martin Selin, Thomas Ihle & Giovanni Volpe
Physical Review E 100(1), 012607 (2019)
doi: 10.1103/PhysRevE.100.012607
arXiv:  1803.06026

We show that sensorial delay alters the collective motion of self-propelling agents with aligning interactions: In a two-dimensional Vicsek model, short delays enhance the emergence of clusters and swarms, while long or negative delays prevent their formation. In order to quantify this phenomenon, we introduce a global clustering parameter based on the Voronoi tessellation, which permits us to efficiently measure the formation of clusters. Thanks to its simplicity, sensorial delay might already play a role in the organization of living organisms and can provide a powerful tool to engineer and dynamically tune the behavior of large ensembles of autonomous robots.

Invited talk by G. Volpe at RIAO/Optilas 2019, Cancun, Mexico, 23 Sep 2019

Deep Learning Applications in Digital Video Microscopy and Optical Micromanipulation
Saga Helgadottir, Aykut Argun, Giovanni Volpe
Invited talk at RIAO/Optilas 2019, Cancun, Mexico, 23-27 September 2019

Since its introduction in the mid 90s, digital video microscopy has become a staple for the analysis of data in optical trapping and optical manipulation experiments [1]. Current methods are able to predict the location of the center of a particle in ideal condition with high accuracy. However, these methods fail as the signal-to-noise ratio (SNR) of the images decreases or if there are non-uniform distortions present in the images. Both these conditions are commonly encountered in experiments. In addition, all these methods require considerable user input in terms of analysis parameters, which introduces user bias. In order to automatize the tracking process algorithms using deep learning have been successfully introduced but have not proved to be usable for practical applications.

Here, we provide a fully automated deep learning tracking algorithm with sub-pixel precision in localizing single particle and multiple particles’ positions from image data [2]. We have developed a convolutional neural network that is pre-trained on simulated single particle images in varying conditions of, for example, particle intensity, image contrast and SNR.

We test the pre-trained network on an optically trapped particle both in ideal condition and challenged condition with low SNR and non-uniform distortions [3]. This pre-trained network accurately predicts the location the trapped particle and a comparison of detected trajectories, the distribution of the particle position and the power spectral density of the particle trajectory clearly shows that our algorithm outperforms tracking by radial symmetry [4]. Our algorithm is also able to track non-ideal images with multiple Brownian particles as well as swimming bacteria that are problematic for traditional methods.

In conclusion, our algorithm outperforms current methods in precision and speed of tracking non-ideal images, while eliminating the need for user supervision and therefore the introduction of user biases. 

References

[1] John C Crocker, David G Grier, Journal of Colloid and Interface Science 179, 298–310 (1996).

[2] Saga Helgadottir, Aykut Argun, Giovanni Volpe,Optica 6, 506–513 (2019).

[3] Philip H Jones, Onofrio M Maragò, Giovanni Volpe, Optical tweezers: Principles and applications. Cambridge University Press, 2015.

[4] Raghuveer Parthasarathy. Nature Methods 9724 (2012).

Falko Schmidt attends the 69th Lindau Nobel laureate meeting

Picture from the open discussion with Steven Chu (Nobel Prize Physics 1997) on the left. 69th Lindau Nobel Laureate Meeting 02.07.2019 Photo/Credit: Patrick Kunkel/ Lindau Nobel Laureate Meetings Open Exhange
Picture of the boat ride to Mainau Island with Donna Strickland (Nobel Prize Physics 2018) on the left. 69th Lindau Nobel Laureate Meeting, 04.07.2019, Lindau, Germany
Picture/Credit: Julia Nimke/Lindau Nobel Laureate Meetings
Picture of the open discussion with David Gross (Nobel Prize Physics 2004) on the left. 69th Lindau Nobel Laureate Meeting 03.07.2019 Photo/Credit: Patrick Kunkel/ Lindau Nobel Laureate Meetings Open Exchange David J. Gross

Falko Schmidt, and Jalpa Soni have been selected to attain the 69th Lindau Nobel Laureate meeting in Lindau, Germany from the 30th June till 5th July 2019.

The Lindau meeting is a platform where 600 young scientists around the world meet former Nobel laureates (as well as Turing-award winners). There they can exchange scientific ideas and experiences, inspire each other and connect for a more interdisciplinary scientific community. These are the three incentives that make this meeting a unique experience.

Falko Schmidt had the privilege to attend it and shares the following insight:

“For me, the Lindau meeting was a unique experience where I was able to meet peers across many disciplines, share ideas and experiences beyond my field of active matter and received much feedback on career choices and daily life as a PhD. Especially fruitful were the many possibilities to engage with senior scientists such as the Nobel laureates which with their humour, insight and advice deepened my passion about science. Personally, I would consider my best encounters with Steven Chu and William Phillips (Nobel Prize in Physics in 1997 on laser cooling),  Donna Strickland (Nobel Prize in Physics in 2018 on ultra-fast lasers), and Stefan Hell (Nobel Prize in Chemistry in 2014 on super-resolution microscopy). I am very grateful for the possibility of attending this meeting and would like to thank the Lindau Nobel committee and Söderbergs Foundation who  were selecting and sponsoring me.
From now on, in times of struggle, I will always look back to this meeting and remember why we all love doing science.”

Intracavity Optical Trapping published in Nature Commun.

Intracavity Optical Trapping

Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser
Fatemeh Kalantarifard, Parviz Elahi, Ghaith Makey, Onofrio M. Maragò, F. Ömer Ilday & Giovanni Volpe
Nature Communications 10, 2683 (2019)
doi: 10.1038/s41467-019-10662-7
arXiv: 1808.07831

Standard optical tweezers rely on optical forces arising when a focused laser beam interacts with a microscopic particle: scattering forces, pushing the particle along the beam direction, and gradient forces, attracting it towards the high-intensity focal spot. Importantly, the incoming laser beam is not affected by the particle position because the particle is outside the laser cavity. Here, we demonstrate that intracavity nonlinear feedback forces emerge when the particle is placed inside the optical cavity, resulting in orders-of-magnitude higher confinement along the three axes per unit laser intensity on the sample. This scheme allows trapping at very low numerical apertures and reduces the laser intensity to which the particle is exposed by two orders of magnitude compared to a standard 3D optical tweezers. These results are highly relevant for many applications requiring manipulation of samples that are subject to photodamage, such as in biophysics and nanosciences.

Seminar by G. Volpe at the Department of Chemistry, University of Gothenburg, 19 Sep 2019

Soft Matter Meets Deep Learning
Giovanni Volpe
Department of Chemistry, University of Gothenburg, Sweden
19 September 2019

After a brief overview of artificial intelligence, machine learning and deep learning, I will present a series of recent works in which we have employed deep learning for applications in photonics and active matter. In particular, I will explain how we employed deep learning to enhance digital video microscopy [1], to estimate the properties of anomalous diffusion [2], and to improve the calculation of optical forces. Finally, I will provide an outlook for the application of deep learning in photonics and active matter.

References

[1] S. Helgadottir, A. Argun and G. Volpe, Digital video microscopy enhanced by deep learning. Optica 6(4), 506—513 (2019)
doi: 10.1364/OPTICA.6.000506

[2] S. Bo, F Schmidt, R Eichborn and G. Volpe, Measurement of Anomalous Diffusion Using Recurrent Neural Networks. arXiv: 1905.02038

Plenary Presentation by G. Volpe at SPIE Nanoscience + Engineering, San Diego, 12 Aug 2019

Optical forces go smart
Giovanni Volpe
Plenary Presentation
SPIE Nanoscience + Engineering, San Diego (CA), USA
11-15 August 2019

Optical forces have revolutionized nanotechnology. In particular, optical forces have been used to measure and exert femtonewton forces on nanoscopic objects. This has provided the essential tools to develop nanothermodynamics, to explore nanoscopic interactions such as critical Casimir forces, and to realize microscopic devices capable of autonomous operation. The future of optical forces now lies in the development of smarter experimental setups and data-analysis algorithms, partially empowered by the machine-learning revolution. This will open unprecedented possibilities, such as the study of the energy and information flows in nanothermodynamics systems, the design of novel forms of interactions between nanoparticles, and the realization of smart microscopic devices.

Talk by G. Volpe at SPIE OTOM XVI, San Diego, 14 Aug 2019

FORMA: a high-performance algorithm for the calibration of optical tweezers
Laura Pérez-García, Alejandro V. Arzola, Jaime Donlucas Pérez, Giorgio Volpe  & Giovanni Volpe
SPIE Nanoscience + Engineering, Optical trapping and Optical Manipulation XV, San Diego (CA), USA
11-15 August 2019

We introduce a powerful algorithm (FORMA) for the calibration of optical tweezers. FORMA estimates accurately the conservative and non-conservative components of the force field with important advantages over established techniques, being parameter-free, requiring ten-fold less data and executing orders-of-magnitude faster. We demonstrate FORMA performance using optical tweezers, showing how, outperforming other available techniques, it can identify and characterise stable and unstable equilibrium points in generic force fields.

Reference: Pérez-García et al., Nature Communications 9, 5166 (2018)
doi: 10.1038/s41467-018-07437-x

Invited talk by G. Volpe at MPI-PKS Workshop, Dresden, Germany, 23 Jul 2019

Deep Learning Applications in Photonics and Active Matter
Giovanni Volpe
Invited talk at the “
Microscale Motion and Light” MPI-PKS Workshop, Dresden, Germany, 22-26 July 2019
https://www.pks.mpg.de/mml19/

After a brief overview of artificial intelligence, machine learning and deep learning, I will present a series of recent works in which we have employed deep learning for applications in photonics and active matter. In particular, I will explain how we employed deep learning to enhance digital video microscopy [1], to estimate the properties of anomalous diffusion [2], and to improve the calculation of optical forces. Finally, I will provide an outlook for the application of deep learning in photonics and active matter.

References

[1] S. Helgadottir, A. Argun and G. Volpe, Digital video microscopy enhanced by deep learning. Optica 6(4), 506—513 (2019)
doi: 10.1364/OPTICA.6.000506

[2] S. Bo, F Schmidt, R Eichborn and G. Volpe, Measurement of Anomalous Diffusion Using Recurrent Neural Networks. arXiv: 1905.02038

Fatemeh Kalantarifard defended her PhD Thesis on 10 June 2019. Congrats!

Fatemeh Kalantarifard defended her PhD Thesis on 10 June 2019 in the Department of Physics Seminar Room SA-240 – Bilkent University.
Her Ph.D. Thesis Defense was live streamed on 10 June 2019 at 15:30 CEST in the Raven & Fox room.

Assoc. Prof. Ömer Ilday (UNAM, Bilkent University),  Assoc. Prof. Alpan Bek (Middle-East Technical University), Assist. Prof. Burcin Ünlü (Bogazici University), Dr. Seymour Jahangirov (UNAM), Prof. Oguz Gülseren (Bilkent University) and Assist. Prof. Giovanni Volpe (Bilkent University) will be the thesis committee members.

Thesis title: Intra-cavity optical trapping with fiber laser

Thesis abstract: Standard optical tweezers rely on optical forces arising when a focused laser beam interacts with a microscopic particle: scattering forces, pushing the particle along the beam direction, and gradient forces, attracting it towards the high-intensity focal spot. Importantly, the incoming laser beam is not affected by the particle position because the particle is outside the laser cavity. Here, we demonstrate that intra-cavity nonlinear feedback forces emerge when the particle is placed inside the optical cavity, resulting in orders-of-magnitude higher confinement along the three axes per unit laser intensity on the sample. This scheme allows trapping at very low numerical apertures and reduces the laser intensity to which the particle is exposed by two orders of magnitude compared to a standard 3D optical tweezers. These results are highly relevant for many applications requiring manipulation of samples that are subject to photodamage, such as in biophysics and nano-sciences.

Thesis Advisor  Giovanni Volpe, Department of Physics, Bilkent University

Place: Physics Department seminar room (SA240), Bilkent University
Time: 10 June, 2019, 16:30 TRT (Turkey Time)

LIVE STREAMING:
Place: Meeting room Raven & Fox, Gothenburg University
Time: 10 June, 2019, 15:30 CEST