Soft Matter Lab’s presentations at OSA-OMA 2021

The Soft Matter Lab is involved in six presentations at the OSA Biophotonic Congress: Optics in the Life Sciences 2021, topical meeting of Optical Manipulation and its Applications.
Moreover, three of the presentations were selected as finalists for the best student paper in the topical meeting of Optical Manipulation and its Applications.

You can find the details below:

12 April

15 April

16 April

  • 16:15 CEST
    Calibration of Force Fields Using Recurrent Neural Networks (AF2D.4)
    Aykut Argun, University of Gothenburg

Invited talk by G. Volpe at 11th Nordic Workshop on Statistical Physics, 15 April 2021, Online

Deep learning for particle tracking.
Machine Learning for Active Matter: Opportunities and Challenges

Giovanni Volpe
(online at) Nordita, Stockholm, Sweden
15 April 2021, 14:30-15.25

Machine-learning methods are starting to shape active-matter research. Which new trends will this start? Which new groundbreaking insight and applications can we expect? More fundamentally, what can this contribute to our understanding of active matter? Can this help us to identify unifying principles and systematise active matter? This presentation addresses some of these questions with some concrete examples, exploring how machine learning is steering active matter towards new directions, offering unprecedented opportunities and posing practical and fundamental challenges. I will illustrate some most successful recent applications of machine learning to active matter with a slight bias towards work done in my research group: enhancing data acquisition and analysis; providing new data-driven models; improving navigation and search strategies; offering insight into the emergent dynamics of active matter in crowded and complex environments. I will discuss the opportunities and challenges that are emerging: implementing feedback control; uncovering underlying principles to systematise active matter; understanding the behaviour, organisation and evolution of biological active matter; realising active matter with embodied intelligence. Finally, I will highlight how active matter and machine learning can work together for mutual benefit.

Date: 15 April 2021
Time: 14:30-15:25
Contribution: Machine Learning for Active Matter: Opportunities and Challenges
Event: 11th Nordic Workshop on Statistical Physics: Biological, Complex, and Non-equilibrium Systems

Presentation by L. Pérez García at OSA-OMA-2021

FORMA allows to identify and characterize all the equilibrium points in a force field generated by a speckle pattern.
FORMA and BEFORE: Expanding Applications of Optical Tweezers. Laura Pérez Garcia, Martin Selin, Alejandro V. Arzola, Giovanni Volpe, Alessandro Magazzù, Isaac Pérez Castillo.
Submitted to OSA-OMA 2021,  ATh1D.5
Date: 15 April
Time: 15:45 (CEST)

Abstract: 
FORMA (force reconstruction via maximum-likelihood-estimator analysis) addresses the need to measure the force fields acting on microscopic particles. Compared to alternative established methods, FORMA is faster, simpler, more accurate, and more precise. Furthermore, FORMA can also measure non-conservative and out-of-equilibrium force fields. Here, after a brief introduction to FORMA, I will present its use, advantages, and limitations. I will conclude with the most recent work where we exploit Bayesian inference to expand FORMA’s scope of application.

Seminar by R. Ganapathy at Soft Matter Lab, 7 April 2021

On Wednesday, 7 April 2021, Rajesh Ganapathy will give a seminar at the Soft Matter Lab and the Department of Physics, University of Gothenburg. He will speak on how energy can be harvested in microscopic environments making use of active baths.

Tuning the performance of a micron-sized Stirling engine by ‘active’ noise
Rajesh Ganapathy
Time: 07 April, 2021, 11:00
Place: Online via Zoom (link to be shared)

Abstract: Mesoscale heat engines, wherein a single atom or a micron-sized colloidal particle is the working substance, are paradigmatic models to elucidate the conversion of heat into work in a noisy environment. While stochastic thermodynamics provides a precise framework for quantifying the performance of these engines when operating between thermal baths, how energy transduction occurs when the reservoirs themselves are out-of-equilibrium, life for instance for a biological motor carrying cargo inside a cell, remains largely unclear. In the first part of my talk, I will describe the design, construction, and quantification of a colloidal Stirling geat engine operating, in the quasistatic limit, between bacterial baths characterized by different levels of activity. We will show that due to ‘active noise’ the performance of the Stirling engine even surpasses a thermal Stirling engine operating between reservoirs with an infinite temperature difference. In the second part of my talk, we will outline a reservoir engineering approach that allowed us to operate the ‘active’ Stirling engine not only in the quasi-static-limit but also at finite cycle durations. Armed with this capability, we will show that the performance of a micron-sized Stirling engine can be tuned by altering only the nature of the reservoir noise statistics.

Falko Schmidt nominated for a Student Paper Prize at the Biophotonics Congress

Non-spherical nanoparticle held by optical tweezers. The particle is trapped against the cover slide.

Falko Schmidt has been nominated by the Optical Society of America for a Student Paper Prize for Optical Manipulation and its Applications among three other finalists. He will present his work on the Dynamics of an Active Nanoparticle in an Optical Trap at the Optical Manipulation and its Applications meeting as part of the 2021 OSA Biophotonics Congress: Optics in Life Sciences.

Based on the oral presentations of the finalists, the jury will select the winner. Falko Schmidt will present on April 16th at 12:30pm (CEST).

This work is based on the article recently published in Nature Communications.

Non-equilibrium properties of an active nanoparticle in a harmonic potential
Falko Schmidt, Hana Šípová-Jungová, Mikael Käll, Alois Würger & Giovanni Volpe
Nature Communications 12, 1902 (2021)
doi: 10.1038/s41467-021-22187-z
arXiv: 2009.08393

David Bronte Ciriza nominated for a Student Paper Prize at the Biophotonics Congress

Optical forces calculated on a sphere with the geometrical optics (left column) and the machine learning (center column) approaches. The difference between both approaches is shown in the column on the right, illustrating the removal of artefacts with the machine learning method.

David Bronte Ciriza has been nominated by the Optical Society of America for a Student Paper Prize for Optical Manipulation and its Applications among three other finalists. He will present his work on Machine Learning to Enhance the Calculation of Optical Forces in the Geometrical Optics Approximation at the Optical Manipulation and its Applications meeting as part of the 2021 OSA Biophotonics Congress: Optics in Life Sciences.

Based on the oral presentations of the finalists, the jury will select the winner. David Bronte Ciriza will present on April 16th at 5:00pm (CEST).

Presentation by F. Schmidt at OSA-OMA-2021

Non-spherical nanoparticle held by optical tweezers. The particle is trapped against the cover slide.
Dynamics of an Active Nanoparticle in an Optical Trap
Falko Schmidt, Hana Sipova-Jungova, Mikael Käll, Alois Würger, Giovanni Volpe
Submitted as OSA-OMA-2021, AF1D.2 Contribution
Date: 16 April
Time: 12:30 CEST

Short Abstract
We investigate a nanoparticle inside an optical trap and driven away from equilibrium by self-induced concentration gradients. We find that a nanoparticle performs fast orbital rotations and its probability density shifting away from equilibrium.

Presentation by D. Bronte Ciriza at OSA-OMA-2021

Optical forces calculated on a sphere with the geometrical optics (left column) and the machine learning (center column) approaches. The difference between both approaches is shown in the column on the right, illustrating the removal of artefacts with the machine learning method.

Machine learning to enhance the calculation of optical forces in the geometrical optics approximation
David Bronte Ciriza, Alessandro Magazzù, Agnese Callegari, Maria A. Iatì, Giovanni Volpe, Onofrio M. Maragò
Submitted to OSA-OMA-2021, AF2D.2 Contribution
Date: 16 April
Time: 17 CEST

Short Abstract: We show how machine learning can improve the speed and accuracy of the optical force calculations in the geometrical optics approximation.

Extended Abstract:

Light can exert forces by exchanging momentum with particles. Since the pioneering work by Ashkin in the 1970’s, optical forces have played a fundamental role in fields like biology, nanotechnology, or atomic physics. Optical tweezers, which are instruments that, by tightly focusing a laser beam, are capable of confining particles in three dimensions, have become a common tool for manipulation of micro- and nano- particles, as well as a force and torque transducer with sensing capabilities at the femtonewton level. Optical tweezers have also been successfully employed to explore novel phenomena, including protein folding and molecular motors, or the optical forces and Brownian motion of 1D and 2D materials.

Numerical simulations play a fundamental role in the planning of experiments and in the interpretation of the results. In some basic cases for optical tweezers, the optical trap can be approximated by a harmonic potential. However, there are many situations where this approximation is insufficient, for example in the case of a particle escaping an optical trap, or for particles that are moving on an optical landscape but are not trapped. In these cases, a more complex treatment of the light-matter interaction is required for a more accurate calculation of the forces. This calculation is computationally expensive and prohibitively slow for numerical simulations when the forces need to be calculated many times in a sequential way. Recently, machine learning has been demonstrated to be a promising approach to improve the speed of these calculations and therefore, to expand the applicability of numerical simulations for experimental design and analysis.

In this work, we explore the geometrical optics regime, valid when the particles are significantly bigger than the wavelength of the incident light. This is typically the case in experiments with micrometer-size particles. The optical field is described by a collection of N light rays and the momentum exchange between the rays and the particle is calculated employing the tools of geometrical optics. The limitation of considering a discrete N number of light rays introduces artifacts in the force calculation. We show that machine learning can be used to improve not only the speed but also the accuracy of the force calculation. This is first demonstrated by training a neural network for the case of a spherical particle with 3 degrees of freedom accounting for the position of the particle. We show how the neural network improves the prediction of the force with respect to the initial training data that has been generated through the geometrical optics approach.
Starting from these results for 3 degrees of freedom, the work has been expanded to 9 degrees of freedom by including all the relevant parameters for the optical forces calculation considering also different refractive indexes, shapes, sizes, positions and orientations of the particle besides different numerical apertures of the objective that focuses the light.

This work proves machine learning as a compact, accurate, and fast approach for optical forces calculation and presents a tool that can be used to study systems that, due to computation limitations, were out of the scope of the traditional ray optics approach.

Presentation by P. Polimeno at OSA-OMA-2021

Gain-Assisted Plasmonic/Dielectric Nanoshells in Optical Tweezers: Non-Linear Optomechanics and Thermal Effects.
Paolo Polimeno, Francesco Patti, Melissa Infusino, Jonathan Sànchez, Maria Iati, Rosalba Saija, Giovanni Volpe, Onofrio Maragò, Alessandro Veltri
Submitted as OSA-OMA-2021, AF1D.D Contribution
Date: 16 April
Time: 13:15 CEST

Short Abstract
We study theoretically the optomechanics of a dyed dielectric/metallic nanoshell in stationary Optical Tweezers. We consider the thermophoretic effects due to the interaction between the incident radiation and the nanoparticle metallic component.

Presentation by A. Callegari at OSA-OMA-2021

Simulation of clustering of Janus partices in an optical potential due to hydrodynamic fluxes.
Clustering of Janus Particles Under the Effect of Optical Forces Driven by Hydrodynamic Fluxes
Agnese Callegari, S. Masoumeh Mousavi, Iryna Kasianiuk, Denis Kasyanyuk, Sabareesh K P Velu, Luca Biancofiore, Giovanni Volpe
Submitted as: OSA-OMA-2021, AM1D.3 Contribution
Date: 12 April
Time: 15 CEST

Short Abstract
Hydrodynamic fluxes generated by Janus particles in an optical potential drive reversible clustering of colloids.

Extended Abstract

Self-organization entails the emergence of complex patterns and structures from relatively simple constituting building blocks. Phenomena such as flocking of birds and growth of bacterial colonies are examples of self-organization in nature. Also artificial microscopic systems feature similar forms of organization with the emergence of clusters, sometimes referred to as “living crystals”. In the past two decades, studies on self-organization focused on systems made of complex colloids with anisotropic surface, such as Janus particles. Depending on their surface material properties, Janus particles have been used in different fields for various applications such as self-assembly, microrheology and emulsion stabilization. Under certain conditions, Janus particles have the ability of self-propelling and behave as active Brownian particles; these active Janus particles might be used in future biomedical nano-devices for diagnostics, drug delivery and microsurgery. Studies on clustering of Janus particles have been performed by Palacci et al., who have shown the formation of living crystals in systems of light-activated Janus particles (Fe2O3-TPM) in hydrogen peroxide solution. Similarly, Buttinoni et al. demonstrated the clustering of light-activated Janus particles (carbon-SiO2) in a water-lutidine binary mixture. Other research groups have shown self-assembly and controlled crystal formations in a mixed system of light-activated Janus particles and passive colloids. In all these studies, a necessary ingredient for the clustering is the active nature of the particles. In systems of passive colloidal particles, crystallization was observed at the bottom of an attractive optical potential, close to the hard boundary during electrophoretic deposition, and in the presence of an external temperature gradient.

Here, we investigate the behavior of a system composed of Janus particles (silica microspheres half-coated with gold) close to a planar surface in the presence of an optical potential, and we experimentally demonstrate reversible clustering triggered by the presence of the optical field. Experimental results are compared and validated by numerical simulations, where the key ingredient for clustering is the presence of an attractive potential of hydrodynamic nature. In fact, the temperature gradient generated by the light absorption at the metallic patches on the Janus particles induces a local force field tangential to the surface of the Janus particle, which causes the fluid to slip at the surface of the particle. Because of the proximity of a planar surface, the flow pattern around the Janus particle is squeezed and results in a flow with a horizontal incoming radial component (parallel to the planar boundary) and outgoing vertical components (directed upwards from the wall). This thermophoretically-induced flow field affects the motion of other neighboring particles, so that a second nearby particle experiences an attractive hydrodynamic drag force toward the particle originating the flux. Clustering is confirmed also in mixtures of Janus particles and passive colloids (silica microspheres), where the hydrodynamic flux due to the Janus particles causes the clustering of the particles in the hybrid system and the formation of living crystals. As a further confirmation that the presence of Janus particles in the optical potential is crucial for the clustering, we show that a system with only non-Janus particles does not give rise to any clustering. We show experimentally that the clustering process is reversible, since the cluster starts to disassemble as soon as the optical potential is switched off.

Beyond their fundamental interest, the reported results are potentially relevant for various applications in the fields of self-assembly, targeted drug-delivery and bioremediation. For example, the possibility of forming clusters at a controllable distance from the minimum of a potential well offers a new route towards self-assembly near a target. Future work will be devoted to understanding how the clustering behavior can be controlled or altered by using more complex optical potentials.