Career Webinar with Christian Reimer: From electro-optics to a start-up company

Christian Reimer, Co-founder and Head of Product at HyperLight and OSA Ambassador

The OSA Student chapter together with FFF will host a career webinar again, this time with Christian Reimer, Co-founder and Head of Product at HyperLight and OSA Ambassador. 

Christian Reimer will give a talk with title: Electro-optics with thin film lithium niobite and what it is like to work at a start-up company.

In the scientific part of his talk, Christian will give an introduction to the field of integrated photonics with thin-film lithium niobate, with a  focus on electro-optic applications, as well as recent progress on transforming the field from chip-based proof-of-concept realizations for wafer-scale production.

In the professional development section, he will then share his experience transitioning from academia to a start-up company. He will talk about differences and similarities in the work environment, what to expect in terms of tasks and responsibilities, and explain how salaries at start-ups can include combinations of equity and incentives.

Christian Reimer´s mini bio:  Dr. Christian Reimer is a physicist and entrepreneur working in the fields of nonlinear optics, integrated photonics and quantum optics. He received graduate degrees from the Karlsruhe Institute of Technology in Germany, Heriot-Watt University in Scotland, and the National Institute of Scientific Research in Canada. He then worked as a postdoctoral fellow at Harvard University, before becoming Co-Founder and Head of Product of HyperLight Corporation. HyperLight, a Venture-Capital funded start-up out of Harvard University, is specialized on integrated lithium niobate technologies for ultra-high performance photonic solutions.

The webinar will be on the 9th of December at 16:30 via zoom.

Registration is required:

Lucero nominated for “Best HealthTech Startup” in Sweden

The spinoff Lucero emerged a year ago as a joint effort between the Soft Matter Lab, the Biological Physics Group and the Chalmers School of Entrepreneurship. The idea of providing a non-invasive micromanipulation platform recently received initial support from the European Research Council (Proof of Concept) and Chalmers Ventures. Lucero has now been nominated for “Best HealthTech Startup” in the Swedish national final of the prestigious Nordic Startup Awards. National winners are partially determined by public vote and will go on to compete against the winners from Iceland, Finland, Norway, and Denmark in the Nordic Final.

The public voting period is now open and the winner of each category will be announced on November 26th.

To vote, click here.

“The first prototype is on its way and we hope to start the initial tests with biological samples pretty soon, all thanks to the support from Chalmers Ventures and Prof. Giovanni Volpe.” Alejandro Diaz, co-founder of Lucero.

Lucero is joined by four other up-and-coming Swedish startups in the HealthTech category, including Spermosens, tendo, Flow Neuroscience, and Deversify.

Other categories include: Startup of the Year, Best Newcomer, Founder of the Year, Investor of the Year, Best Co-working Space, Best Accelerator/Incubator Program, Ecosystem Hero of the Year, Best Virtual Teamwork Solution, People’s Choice, and Best Climate Impact Startup.

The Nordic Startup Awards is part of the Global Startup Awards, which is a large startup competition that aims to recognize and connect entrepreneurs, investors, accelerator/incubator programs, and government initiatives from all around the world.

Follow Lucero’s updates on, LinkedIn, and Instagram.


Diagnosis of a genetic disease improves with machine learning, a summary in Swedish published in Fysikaktuellt

Neural networks consist of a series of connected layers of neurons, whose connection weights are adjusted to learn how to determine the diagnosis from the input data.

A summary in Swedish of our previously published article “Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning” has been published in Fysikaktuellt, the journal of the Swedish Physical Society (Svenska fysikersamfundet).

Article: “Diagnostisering av sjukdomar förbättras med maskininlärning”, Saga Helgadottir, Giovanni Volpe and Stefano Romeo (in Swedish)

Original article: Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning

Press release: 
Algoritm lär sig diagnostisera genetisk sjukdom (in Swedish)
An algorithm that learns to diagnose genetic disease (in English)

Career Seminar by OSA Ambassador Aura Higuera Rodriguez, 6 October 2020

Aura Higuera, Technical Account Manager PIC technology and Optical Society Ambassador

The OSA Chapter of Gothenburg together with the Association of Graduate Students in Physics (FFF) will organise an online career talk by Aura Higuera Rodriguez, OSA ambassador and Technical Account Manager at Synopsys Photonic Solutions. The seminar will take place online via Zoom on Tuesday 6th of October at 5 pm.

Aura completed her PhD at Eindhoven University of Technology in the photonic integration group. Afterwards, she worked at the Photonic Integration Technology Center as JePPIX Coordinator and Application Support and since January 2019 she joined Synopsys Photonic Solutions as Technical Account Manager. More about Aura on the OSA website .

Aura is among the OSA Ambassadors 2020 and her talk will focus on Career Development and Emotional Intelligence. The seminar is open to all members of the University of Gothenburg and Chalmers University of Technology via registration using the institutional email.

The seminar will be held on Zoom and the link will be available one hour before the start. To attend the talk, please register on   For information or questions you can contact OSA-GU at or FFF at

Place: Zoom (online)
Date: 6 October 2020
Time: 17:00 CET

New OSA chapter established at Gothenburg University!

Screenshot of the GU-OSA Student Chapter kick-off meeting, autumn semester 2020.

A new student chapter of the Optical Society of America (OSA) has been established at the Physics Department of Gothenburg University!

The founding members of the GU-OSA student chapter are students from the Soft Matter Lab, the Biophysics Group, and Optical Levitation Group, all part of the Physics Department of Gothenburg University. The chapter activity started on the autumn semester of 2020 with the online kick-off meeting, where the future plans and activities of the GU-OSA chapter were discussed.

The Optical Society of America (OSA) supports outreach and networking through the student chapters. So far, there are over 370 Student Chapter across the world organising events such as seminars, colloquiums, and outreach activities focused on increasing awareness of the importance of optics in our daily life and society.

To keep you updated on the GU-OSA student chapter activities, follow us on social media:
Facebook: OSA-GU Student chapter

or contact us via email:

Presentation by F. Schmidt at the Gothenburg Nanophotonic Symposium, 26 Mar 2019

Gothenburg Nanophotonic Symposium 2019

The first symposium on the topic of Nanophotonics brings together researchers from physics and chemistry departments in Gothenburg to present their work and share ideas.

Organised by Dr. R. Verre from the Bionanophotonic group at Chalmers University of Technology seven different groups will be present among which F. Schmidt will represent our Softmatter division of Gothenburg University.

The symposium will take place on the 26th of March 2019 at Kollektorn in MC2, Chalmers Campus. Everybody is welcome to attend!

Giovanni Volpe on the Panel on the 2018 Nobel Prize in Physics, Stockholm, 7 Dec 2018

Panel on the 2018 Nobel Prize in Physics
Friday, December 7, 15:00 – 18:00
Oscar Klein hall, Albanova, Roslagstullsbacken 21, Stockholm

Albanova, Stockholm’s center for Physics, Astronomy and Biotechnology cordially organizes a panel discussion about this year’s Nobel Prize in Physics, followed by a social gathering with drinks and snacks.

Panel Members:
Felix Ritort, University of Barcelona
Cord Arnold, Lunds University
Giovanni Volpe, Göteborg University
Valdas Pasiskevicius, KTH Royal Institute of Technology

Eva Lindroth, Stockholms University

Here is the direct videolink:  (817MB)

The event web-page is at:

Talk on optical tweezers by Aykut Argun at Gothenburg PhD Pub. 17 Oct 2018

Aykut Argun will present a popular science talk on the principles and applications of optical tweezers at a PhD-student event called Gothenburg Ph.D. Pub.

Title: Optical tweezers and applications

Abstract: Can objects be moved contact-free only by the power of light?
The answer which deserved a Nobel Prize in Physics last week is yes.
Aykut Argun from GU Physics will present how in the next Ph.D. Pub.

Place: Haket – Bar å sånt, Första långgatan 32, 413 27 Gothenburg
Time: Wednesday, October 17, 2018 at 7 PM – 10 PM

Outreach: Jalpa Soni visits the KLARA Teoretiska Gymnasium

Jalpa Soni reports on her outreach experience on 28 September 2018 to a local high school within the “European Researchers’ Night”.

On Spetember 28, 2018 under the realm of “European Researchers’ Night”, organised by Marie-Skolodwska-Curie Actions (MSCA, H2020), Brussels became the hub of science and research communication with the general public. Researchers from across Europe, mainly funded by various H2020 programs, gathered in Brussels to celebrate scientific temperament and spread its importance in everyday life.

Other than Brussels, universities and research institutions in over 340 cities all over Europe and neighbouring countries also participated in similar events where science and research was celebrated.

The University of Gothenburg (UGOT) also participated in this event by organising school visits for researchers to talk about science and life as a researcher to young students. Thanks to UGOT, I also got a chance to get involved in the “Researchers’ Friday” to go to a school and interact with students about my work and about researchers in general.

I visited the school named KLARA Teoretiska Gymnasium to talk to final year high school students who are about to enter university in a couple of months. Therefore, this was the ideal age group who might be interested in choosing science for higher education and would be curious about how is it to be a scientist.

I intended to tell them about my research project as well as to connect its implications in everyday scenarios of life. Beyond that, I was hoping for an engaging question-answer session where they could ask me anything related to science as a career.

I prepared a small speech where I could tell them about what I work on, and why, and to mention several related phenomena of nature. I also intended to tell them about the kind of applications of my experiments.

It was a wonderful experience. It really exceeded my expectations.

I have been involved in outreach activities before as well, but this was my first such experience in Sweden and I loved it. The students were very interested in what I had to say and what I was working in.

The following Q&A session was quite interesting as they asked many questions ranging from why I decided to study physics to how is it to live in different countries! Some wanted to know how scientists find the problems they work on and some were more interested in how do researchers keep motivated if an experiment fails!

At the end, they also had fun with the hands-on experiment I had brought with me to demonstrate some of the things I had talked about.

It was quite amazing to see that young students, on the verge of entering university, were so aware of the need of scientific mindset in general. I hope that some of them will choose research as their future interests and will contribute to the quest of knowledge.

Here is my speech:

Hi everyone,

My name is Jalpa and I am a researcher at the university of Gothenburg. I work at the department of Physics, which means I am a physicist. But what is it that I actually do? and more importantly why? Well, physics is behind almost everything we do in our everyday life! All of the technologies, radio, TV, computers, phones or the way we travel around with bikes, cars or planes came into existence because of physics. The very nature of universe can be understood with the laws of Physics. You might have heard the saying that “mathematics is the language of science”, and it’s true, isn’t it? But physics is the heart of science! From looking at stars in the universe to how we “see” things can be understood with Physics. However, today our knowledge has expanded so much that science is branched out in so many fields and subfields. And all these subfields are also being updated everyday, bringing more data. More data means more understanding. More data also means more challenges… and that means more technological developments. One of the recent example is the new iPhones that Apple announced this month. If you have followed, you might already know that their newer models are running on a nanometer size chip – that is one-billionth of a meter – claimed to be the smallest chip for a smartphone ever! That has been possible because physicists have been studying what happens at those scales with matter.

A billionth of a meter! Being able to study something that small is fascinating, right? A few decades ago, that would have been unimaginable, except for science fiction maybe. But today we talk about nanorobots that can go in our bodies and perform medical tasks for us! Technological advances have once again reduced the boundaries inside science and once again interdisciplinary science is becoming more exciting, to use it to improve life in general.

I also work in both biology and physics, occasionally using some chemistry as well as a bit of maths to explain the theory of my experiments. Among my various projects, the main theme is to study small things – of micron size – that is one-millionth of a meter. Specifically, I study the pattern of microorganisms (like bacteria), how they move around in various conditions.

But the effects I study with them are observed even in human scales. (showing some slides with images at this point)

  1. For example, look at these penguins! These are emperor penguins, they live in Antarctica. These penguins huddle, gather around and move in large groups. And since it’s very cold environment where they live, they need to keep themselves warm! Look at these nice patterns they create while they move. They lean on the one in front of them and then rotate around in small steps, shifting positions from the outer side to the centre of the circle. This way, they are warm once inside the centre, the newcomers come and join the outside, but eventually everyone gets a chance to move inside for a while at least. The shifting pattern allows that to happen and everybody is happy.
  2. Now look at these birds! They make beautiful patterns when they fly around together. As you might already guess, generally migrating birds make such large groups because it’s easier to keep the predators away. Also, it’s easier to hunt this way. In Denmark, they cause the effect of the “black sun” or the “sort sol” as the Danes call it. Every year in spring and autumn, the European starlings migrate from southern Europe to Scandinavia – near baltic sea – to breed. In Denmark, groups can get as big as a million birds and they cover the sun right around sunset to choose their nesting place, causing the “sort sol”.
  3. In the ocean, large groups of fish also move in beautiful patterns!
  4. Okay, all these patterns are nice to look at! but why are they important? right?
  5. Well, look at this. Any of you find it familiar? It’s a scene of a crowd from one of the games, right? Did you know this particular game became a really big deal because of this particular scene? any guesses why? I will give you a hint – it’s the people! The number of people they simulated for this scene is what made the history. Wonder why is a crowd scene in a video game such a big deal? It’s because simulating a crowd of people is a lot more difficult than one would think! Look at this crowd simulation, you can see how it describes the people in a real crowd! There will be much more collisions and much more mingling in a real crowd! And it’s important to make crowd simulations more realistic to improve disaster management, isn’t it? For example, to design proper evacuation protocols in a fire-alarm situations, or for earthquake evacuation protocols. It would be good to be able to design public places accommodating good emergency protocols! Understanding these patterns of nature can help us achieve that on a more efficient manner.
  6. And now let’s get back to the small world! At micron scales, look at these bacteria – they behave in nice and familiar looking patterns as well! And it’s important to understand how they move in various environment, like how they spread on a bad slice of bread, or in a rotten fruit, or in our body! Such studies could tell us how to stop the unwanted ones to enter our system and to select the good ones for benefits. Because not all bacteria are bad, some are good for our body, help us digest our food for example.

So, one of my project is related to this. We study bacteria in a complex environment and see how they find their way around it. We put some bacteria and some small particles (around the same size as bacteria but made of silica) together and monitored what happens to the bacteria. As it turns out they make highways, which are reused by the following bacteria, and this way they actually move in longer distances compared to when there are no obstacles. Bacteria alone move in more circular patterns, while in an obstacle environment their circles get bigger! We are trying to understand the mechanism behind this kind of motion and we want to see if that can be used to design artificial robots based on bacterial motion.

Now, I also want to study these things in three dimensions, more realistic! The read world is 3D! So I am building a microscope to do 3D imaging at high speeds to monitor live motions of these microorganisms. It’s called a light-sheet microscope and it looks like this! Not at all like a typical microscope! And this is one of the 3D video I took earlier this week. It’s short, but I think you can see the 3D volume and the motion of particles in 3D.

So, this is what I do! I also work with some other projects and I will talk about them if you are interested. Thank you for listening and feel free to ask any questions!