Jalpa Soni is MSCA Fellow of the Week

Our Marie-Curie postdoctoral researcher Jalpa Soni becomes the #MSCA Fellow of the Week, and gets her project highlighted on Tweeter and Facebook pages of the Marie-Skłodowska-Curie Actions

Jalpa is studying the behaviour of micro swimmers like bacteria in 3D complex environments. That will give us the understanding of how they propagate in living systems, which in turn will be used to manipulate them for medicinal advantages.One such example would be to create artificial swimmers (active particles) mimicking natural bacteria for more efficient and targeted drug-delivery applications.To monitor the movement of such micro swimmers in 3D, Jalpa has developed a customised light-sheet microscope that is capable of fast volumetric imaging. The long term goal of the project is to create active particle induced drug-delivery methods for organ-on-chip devices and to monitor the drug efficacy in real time.

This is Jalpa’s insight as a MSCA fellow:

“The unique opportunity to build a new collaborative network has been the most beneficial aspect of my MSCA fellowship. The travels for the project has allowed me to experience different research organisations and to meet experts of various fields which is very important for interdisciplinary research that I love doing.”

Project Name: ActiveMotion3D – Experimental study of three-dimensional dynamics of Active particles

Learn more about Jalpa and her project:
CORDIS: https://bit.ly/2Rz1rVD

Tweeter: https://twitter.com/MSCActions/status/1070985015754919936
FB: 

Laura Pérez-García joins the Soft Matter Lab

Laura Pérez-García starts her PhD at the Physics Department of the University of Gothenburg on 15th November 2018.

Laura has a Master degree in physical sciences from Universidad Nacional Autónoma de México in México City, where she submitted a Master thesis about optical forces in speckle fields.

The aim of her  PhD project is to study the behavior of active matter using Light Sheet Microscopy.

Giovanni Volpe New Docent in Physics

From the article New Docent in Physics (English) and Ny docent i fysik (Swedish)

Three questions for Giovanni Volpe, appointed Docent in Physics at the Faculty of Science, University of Gothenburg.

Interview by: Linnéa Magnusson
Photo by: Malin Arnesson

What is your research about?

“I am conducting research in several different areas. Part of my work concerns artificial micro swimmers. In simple terms, this is about biological and artificial objects of microscopic size that can get around by themselves and counteract microorganisms. Research on micro swimmers involves many possibilities within basic science, nanoscience and nanotechnology.

“I am collaborating with Karolinska Institutet on a project that deals with neurodegenerative diseases such as Alzheimer’s, Parkinson’s and ALS (amyotrophic lateral sclerosis). We have developed software that serves as a toolkit, helping us to detect these diseases at an early stage.

“Another project deals with optical trapping and optical manipulation. Using optical tweezers, I can measure microscopic forces, for example.

“Finally, I am also working on a project that involves managing the challenges of condensed matter physics – in other words, matter and processes at the atomic level. With the help of machine learning, we can handle complex algorithms.”

What can society learn from your research?

“I hope that our work with micro swimmers can become a foundation on which we can build, so that in the future we can use them in real life. For example, this could involve cleaning contaminated soil or developing what are known as chiral drugs – medications that are more selective and more controllable and that have fewer side effects. It is to be hoped that our work in neuroscience will lead us to quickly detect and treat neurodegenerative diseases.”

What do you think is most exciting about the future?

“What is most exciting is the possibility of using artificial intelligence to solve physical and medical problems. In the future we will go from people developing and testing ideas to have data and systems under investigation speak for themselves.

Tre frågor till Giovanni Volpe som antagits som oavlönad docent i fysik vid Naturvetenskapliga fakulteten, Göteborgs universitet.

Vad handlar din forskning om?

– Jag forskar inom flera olika områden. En del i mitt arbete handlar om konstgjorda ”micro swimmers”. Förenklat så handlar det om biologiska och artificiella föremål i mikroskopisk storlek som kan ta sig fram själva och motverka mikroorganismer. Forskning om ”Micro Swimmers” innebär en mängd möjligheter inom grundvetenskap, nanovetenskap och nanoteknik.

– Jag samarbetar med Karolinska Institutet inom ett projekt som handlar om neurodegenerativa sjukdomar, som Alzheimers sjukdom, Parkinsons sjukdom och ALS. Vi har utvecklat en programvara som fungerar som en verktygslåda, som hjälper oss att tidigt upptäckta dessa sjukdomar.

– Ett annat projekt handlar om optisk fångst och optisk manipulation. Med hjälp av optiska pincetten kan jag exempelvis mäta mikroskopiska krafter.

– Till sist arbetar jag även med ett projekt som handlar om att hantera utmaningar med den kondenserade materiens fysik, alltså materia och processer på atomär nivå. Till hjälp har vi inlärningsmaskiner som kan hantera komplexa algoritmer.

Vad kan samhället lära av din forskning?

– Jag hoppas att arbetet med ”Micro swimmers ” kan bli en grund att bygga vidare på. Så att vi i framtiden kan använda ”Micro swimmers ” i verkliga livet. Det kan exempelvis handla om att kunna rengöra förorenad jord eller utveckla så kallade kirala läkemedel, det vill säga mediciner som är både mer selektiva, mer styrbara och har mindre biverkningar. Arbetet inom neurovetenskap kommer förhoppningsvis leda till att vi snabbt kan upptäcka och behandla neurodegenerativa sjukdomar.

Vad tycker du är mest spännande i framtiden?

– Det som är mest spännande är möjligheten att använda artificiell intelligens för att lösa fysiska och medicinska problem. I framtiden kommer vi att gå från att det är människor som utvecklar och testar idéer till att det är datorer och system som kommer att undersöka och analysera varandra.

Alejandro V. Arzola visits the Soft Matter Lab. Welcome!

Alejandro V. Arzola is a Visiting Professor from the Universidad Nacional Autónoma de México in Mexico City. His visiting position is financed through the Linnaeus Palme International Exchange Programme.

Alejandro was born in Oaxaca in the south of Mexico. He studied for a PhD at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, worked as a posdoctoral researcher at the Institutte of Scientific Instruments in Brno, Czech Republic, and at UNAM. Since 2014 he joined the group of Optical Micromanipulation at the Institute of Physics in UNAM.

He is interested in optical micromanipulation and related research fields. His latest research deals with the transport of Brownian particles in optical landscapes under breaking space-time symmetries, a system which is known in the literature as ratchets. He is also interested in the behavior of microscopic particles in structured light fields with spin and orbital angular momentum.

Freddie Ogemark & Maximlian Leyman defended their Master Thesis. Congrats!

Freddie Ogemark & Maximlian Leyman defended their Master thesis in Complex Adaptive Systems at Chalmers University of Technology on 14 June 2018

Title: Cooperative Robotics with Sensorial Delay

The purpose of this work is to study how the behaviour of robots changes when the data from their sensors is affected by a certain delay. Robots of the model Elisa-3 were therefore studied while performing Brownian motion and with certain features varying as a function of the intensity measured by its sensors. Introducing a delay and varying its sign is shown to have a significant effect on a robot’s behavior. A single robot moving in an intensity field is either drawn to or avoiding higher inten- sities for a positive or a negative delay respectively. In this case experimental data show good agreement with simulated behavior. Simulations also show that multi- ple robots should form clusters when interacting under the influence of a positive delay; however, only weak tendencies towards cluster formation can be seen in the experiments.

​Name of the master programme: MPCAS – Complex Adaptive Systems
Supervisor: Giovanni Volpe, Department of Physics, University of Gothenburg
Examiner: Giovanni Volpe, Department of Physics, University of Gothenburg
Opponents: Andres Hansson & Richard Sundqvist, MP Complex Adaptive Systems, Department of Physics, Chalmers University of Technology

Place: ES51, EDIT building
Time: 14 June, 2018, 17:00

 

 

Francesco Patti visits the Soft Matter Lab. Welcome!

Francesco Patti is a PhD student in Physics at the University of Messina (started in October 2017). His master’s degree thesis was about “Theoretical study of the interaction between E.M. radiation and chiral nanomaterials” (July 2017) and now he is a visiting student at the Soft Matter Lab where he will work on modeling of optical forces in liquids and vacuum as well as modelling of passive and active stochastic systems“ (June-July 2018).

Antonio A. R. Neves visits the Soft Matter Lab. Welcome!

Antonio Alvaro Ranha Neves is a Visiting Professor from the Federal University of ABC in Brazil. His visiting position is financed through a FAPESP-ERC grant. He will visit us for 4 months from May 12, 2018, to September 12, 2018.

He works mainly with optical tweezers studying optical forces with both experimental and theoretical tools.

He obtained his Ph.D. in physics in 2006, at the State University of Campinas (Brazil). From 2006 to 2012, he worked as a postdoctoral researcher at the National Nanotechnology Laboratories of the Nanoscience Institute in Lecce (Italy), within the Soft-matter division. Since 2012, he is a professor at the Federal University of ABC (Brazil), accredited in the graduate program of Nanoscience and Advanced Materials.

His main research interest is in the field of light-matter interaction, with a special focus on the applications of optical tweezers as well as linear and multi-photon spectroscopy as well. His current line of research is the study of bull sperm motility with optical tweezers, and starting the characterization of thermal properties of metallic nanoparticles in optical traps.

Rafal Piwowarczyk defended his Master Thesis. Congrats!

Rafal Piwowarczyk defended his Master thesis in Complex Adaptive Systems at Chalmers University of Technology on 19 February 2018

​Title: Influence of Delay on the Vicsek Model

The aim of this work is to show that sensorial delay influences the behaviour of self-propelling agents using self-aligning interactions. The model was based on the Vicsek model, which is a two-dimensional system of self-propelling particles that are able to detect and align with each other within a certain radius. We prove that the introduction of short delays favours cluster and swarm formation, while extending the delay to higher values or implementation of negative delays significantly harms this process. We introduce a global clustering parameter, which is based on the use of the Voronoi tessellation, which allows us to measure the emergence of clusters. The sensorial delay might play a crucial role in systems that exhibit swarming behaviours and it’s better understanding can result in the construction of key tools for the realisation and manipulation of complex networks of autonomous robots.

​Name of the master programme: MPCAS – Complex Adaptive Systems
Supervisor: Giovanni Volpe, Department of Physics, University of Gothenburg
Examiner: Giovanni Volpe, Department of Physics, University of Gothenburg
Opponent: Freddie Ogemark, MP Complex Adaptive Systems, Department of Physics, Chalmers University of Technology

Place: PJ, lecture hall, Fysik Origo, Fysik
Time: 19 February, 2018, 11:00