Presentation by J. Pineda at SPIE-ETAI, San Diego, 23 August 2023

Input graph structure including a redundant number of edges. (Image by J. Pineda.)
MAGIK: Microscopic motion analysis through graph inductive knowledge
Jesús Pineda
Date: 23 August 2023
Time: 2:30 PM PDT

Characterizing dynamic processes in living systems provides essential information for advancing our understanding of life processes in health and diseases and for developing new technologies and treatments. In the past two decades, optical microscopy has undergone significant developments, enabling us to study the motion of cells, organelles, and individual molecules with unprecedented detail at various scales in space and time. However, analyzing the dynamic processes that occur in complex and crowded environments remains a challenge. This work introduces MAGIK, a deep-learning framework for the analysis of biological system dynamics from time-lapse microscopy. MAGIK models the movement and interactions of particles through a directed graph where nodes represent detections and edges connect spatiotemporally close nodes. The framework utilizes an attention-based graph neural network (GNN) to process the graph and modulate the strength of associations between its elements, enabling MAGIK to derive insights into the dynamics of the systems. MAGIK provides a key enabling technology to estimate any dynamic aspect of the particles, from reconstructing their trajectories to inferring local and global dynamics. We demonstrate the flexibility and reliability of the framework by applying it to real and simulated data corresponding to a broad range of biological experiments.

Reference
Pineda, J., Midtvedt, B., Bachimanchi, H. et al. Geometric deep learning reveals the spatiotemporal features of microscopic motionNat Mach Intell 5, 71–82 (2023)

Poster by J. Pineda at SPIE-ETAI, San Diego, 21 August 2023

The proposed method allows for robust detection, segmentation, and tracking of soft granular clusters. (Image by J. Pineda.)
Unveiling the complex dynamics of soft granular materials using deep learning
Jesús Pineda
Date: 21 August 2023
Time: 5:30 PM PDT

Soft granular materials, comprising closely packed grains held together by a thin layer of lubricating fluid, display intricate many-body dynamics resulting in complex flows and rheological behavior, including plasticity and viscoelasticity, memory effects, and avalanches. Despite their widespread presence in nature and industrial applications, the structural mechanics and microscale dynamics of soft granular clusters still need to be better understood, especially those under strong confinement or surrounded by free interfaces. This work aims to bridge the gap in understanding the internal dynamics of finite-sized soft granular media by introducing a deep learning approach to characterize the shapes and movements of deformable grains in the material. We demonstrate the reliability and versatility of the method by studying the dynamics of soft granular clusters that self-organize under external flow in various physically relevant scenarios.

J. Pineda was awarded the Young Investigator Poster Award at the XVII International Congress of the Spanish Biophysical Society, Castelldefels, 30 Jun 2023

Jesús Pineda receives the Young Investigator Poster Award. (Photo by S. Masò Orriols.)
Jesús Pineda was awarded the Young Investigator Poster Award on 30 June 2023 for its poster MAGIK: Microscopic motion analysis through graph inductive knowledge presented at the XVII International Congress of the Spanish Biophysical Society in Castedefells.

Here the link to the poster.

Presentation by J. Pineda at the XVII International Congress of the Spanish Biophysical Society, Castelldefels, 30 June 2023

Input graph structure including a redundant number of edges. (Image by J. Pineda.)
MAGIK: Microscopic motion analysis through graph inductive knowledge
Jesús Pineda

Characterizing dynamic processes in living systems provides essential information for advancing our understanding of life processes in health and diseases and for developing new technologies and treatments. In the past two decades, optical microscopy has undergone significant developments, enabling us to study the motion of cells, organelles, and individual molecules with unprecedented detail at various scales in space and time. However, analyzing the dynamic processes that occur in complex and crowded environments remains a challenge. This work introduces MAGIK, a deep-learning framework for the analysis of biological system dynamics from time-lapse microscopy. MAGIK models the movement and interactions of particles through a directed graph where nodes represent detections and edges connect spatiotemporally close nodes. The framework utilizes an attention-based graph neural network (GNN) to process the graph and modulate the strength of associations between its elements, enabling MAGIK to derive insights into the dynamics of the systems. MAGIK provides a key enabling technology to estimate any dynamic aspect of the particles, from reconstructing their trajectories to inferring local and global dynamics. We demonstrate the flexibility and reliability of the framework by applying it to real and simulated data corresponding to a broad range of biological experiments.

Date: 30 June 2023
Time: 12:30
Event: XVII International Congress of the Spanish Biophysical Society

Presentation by J. Pineda at AI for Scientific Data Analysis, Gothenburg, 1 Jun 2023

Input graph structure including a redundant number of edges. (Image by J. Pineda.)
Geometric deep learning reveals the spatiotemporal features of microscopic motion
Jesús Pineda

Characterizing dynamic processes in living systems provides essential information for advancing our understanding of life processes in health and diseases and for developing new technologies and treatments. In the past two decades, optical microscopy has undergone significant developments, enabling us to study the motion of cells, organelles, and individual molecules with unprecedented detail at various scales in space and time. However, analyzing the dynamic processes that occur in complex and crowded environments remains a challenge. This work introduces MAGIK, a deep-learning framework for the analysis of biological system dynamics from time-lapse microscopy. MAGIK models the movement and interactions of particles through a directed graph where nodes represent detections and edges connect spatiotemporally close nodes. The framework utilizes an attention-based graph neural network (GNN) to process the graph and modulate the strength of associations between its elements, enabling MAGIK to derive insights into the dynamics of the systems. MAGIK provides a key enabling technology to estimate any dynamic aspect of the particles, from reconstructing their trajectories to inferring local and global dynamics. We demonstrate the flexibility and reliability of the framework by applying it to real and simulated data corresponding to a broad range of biological experiments.

Date: 1 June 2023
Time: 10:15
Place: MC2 Kollektorn
Event: AI for Scientific Data Analysis: Miniconference

Presentation by J. Pineda at ISMC 2022, Poznan, 19 September 2022

Input graph structure including a redundant number of edges. (Image by J. Pineda.)
Revealing the spatiotemporal fingerprint of microscopic motion using geometric deep learning
Jesús Pineda, Benjamin Midtvedt, Harshith Bachimanchi, Sergio Noé, Daniel Midtvedt, Giovanni Volpe, and Carlo Manzo
Submitted to ISMC 2022
Date: 19 September 2022
Time: 13:40 (CEST)

The characterization of dynamical processes in living systems provides important clues for their mechanistic interpretation and link to biological functions. Thanks to recent advances in microscopy techniques, it is now possible to routinely record the motion of cells, organelles, and individual molecules at multiple spatiotemporal scales in physiological conditions. However, the automated analysis of dynamics occurring in crowded and complex environments still lags behind the acquisition of microscopic image sequences. Here, we present a framework based on geometric deep learning that achieves the accurate estimation of dynamical properties in various biologically-relevant scenarios. This deep-learning approach relies on a graph neural network enhanced by attention-based components. By processing object features with geometric priors, the network is capable of performing multiple tasks, from linking coordinates into trajectories to inferring local and global dynamic properties. We demonstrate the flexibility and reliability of this approach by applying it to real and simulated data corresponding to a broad range of biological experiments.