Antonio A. R. Neves visits the Soft Matter Lab. Welcome!

Antonio Alvaro Ranha Neves is a Visiting Professor from the Federal University of ABC in Brazil. His visiting position is financed through a FAPESP-ERC grant. He will visit us for 4 months from May 12, 2018, to September 12, 2018.

He works mainly with optical tweezers studying optical forces with both experimental and theoretical tools.

He obtained his Ph.D. in physics in 2006, at the State University of Campinas (Brazil). From 2006 to 2012, he worked as a postdoctoral researcher at the National Nanotechnology Laboratories of the Nanoscience Institute in Lecce (Italy), within the Soft-matter division. Since 2012, he is a professor at the Federal University of ABC (Brazil), accredited in the graduate program of Nanoscience and Advanced Materials.

His main research interest is in the field of light-matter interaction, with a special focus on the applications of optical tweezers as well as linear and multi-photon spectroscopy as well. His current line of research is the study of bull sperm motility with optical tweezers, and starting the characterization of thermal properties of metallic nanoparticles in optical traps.

Seminar by G. Volpe at TU Dresden, 3 May 18

Emergent Complex Behaviors in Active Matter
Giovanni Volpe
TU Dresden, Dresden, Germany
3 May 2018

After a brief introduction of active particles, I’ll present some recent advances on the study of active particles in complex and crowded environments.
First, I’ll show that active particles can work as microswimmers and microengines powered by critical fluctuations and controlled by light.
Then, I’ll discuss some examples of behavior of active particles in crowded environments: a few active particles alter the overall dynamics of a system; active particles create metastable clusters and channels; active matter leads to non-Boltzmann distributions and alternative non-equilibrium relations; and active colloidal molecules can be created and controlled by light.
Finally, I’ll present some examples of the behavior of active particles in complex environments: active particles often perform 2D active Brownian motion; active particles at liquid-liquid interfaces behave as active interstitials or as active atoms; and the environment alters the optimal search strategy for active particles in complex topologies.