Nonadditivity of Critical Casimir Forces published in Nature Commun.

Nonadditivity of critical Casimir forces

Nonadditivity of critical Casimir forces
Paladugu Sathyanarayana, Agnese Callegari, Yazgan Tuna, Lukas Barth, Siegfried Dietrich, Andrea Gambassi & Giovanni Volpe
Nature Communications 7, 11403 (2016)
DOI: 10.1038/ncomms11403
arXiv: 1511.02613

In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces.

Featured in:
2+1 is not always 3: In the microworld unity is not always strength”,
Wenn 2 plus 1 nicht 3 ergibt”, Scinexx
Физики доказали существование эффекта множества тел”,
2+1 is not always 3”, Health Medicinet
Nei colloidi 2 +1 non è uguale a 3”, Le Scienze
Nei colloidi 2 +1 non è uguale a 3”, All News 24
Wenn 2 plus 1 nicht 3 ergibt”, Scinexx
2+1 ist nicht immer 3 – In der Mikro-Welt macht Einigkeit nicht immer”, idw – Informationsdienst Wissenschaft

Leave a Reply

Your email address will not be published. Required fields are marked *